2,977 research outputs found

    Space propulsion systems. Present performance limits and application and development trends

    Get PDF
    Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed

    The new surprising behaviour of the two "prototype" blazars PKS 2155-304 and 3C 279

    Full text link
    Recent VHE observations have unveiled a surprising behaviour in two well-known blazars at opposite sides of the blazar sequence. PKS 2155-304 have shown for the first time in an HBL a large Compton dominance, high gamma-ray luminosities and a cubic relation between X-ray and VHE fluxes. 3C 279 is the first FSRQ detected at VHE. The high luminosity required to overcome the significant absorption caused by the BLR emission cannot be easily reconciled with the historical and quasi-simultaneous SED properties. Both cases shed a new light on the structure and ambient fields of blazars. Contrary to previous claims, it is also shown that 3C 279 --as any FSRQ-- cannot in general provide robust constraints on the EBL.Comment: Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008" (Gamma 2008), July 7-11, 2008. Slightly refined text with updated reference

    Contemporary gene flow and mating system of Arabis alpina in a Central European alpine landscape

    Get PDF
    Background and Aims Gene flow is important in counteracting the divergence of populations but also in spreading genes among populations. However, contemporary gene flow is not well understood across alpine landscapes. The aim of this study was to estimate contemporary gene flow through pollen and to examine the realized mating system in the alpine perennial plant, Arabis alpina (Brassicaceae). Methods An entire sub-alpine to alpine landscape of 2 km2 was exhaustively sampled in the Swiss Alps. Eighteen nuclear microsatellite loci were used to genotype 595 individuals and 499 offspring from 49 maternal plants. Contemporary gene flow by pollen was estimated from paternity analysis, matching the genotypes of maternal plants and offspring to the pool of likely father plants. Realized mating patterns and genetic structure were also estimated. Key Results Paternity analysis revealed several long-distance gene flow events (≤1 km). However, most outcrossing pollen was dispersed close to the mother plants, and 84 % of all offspring were selfed. Individuals that were spatially close were more related than by chance and were also more likely to be connected by pollen dispersal. Conclusions In the alpine landscape studied, genetic structure occurred on small spatial scales as expected for alpine plants. However, gene flow also covered large distances. This makes it plausible for alpine plants to spread beneficial alleles at least via pollen across landscapes at a short time scale. Thus, gene flow potentially facilitates rapid adaptation in A. alpina likely to be required under ongoing climate chang

    Self-aligned fabrication process for silicon quantum computer devices

    Full text link
    We describe a fabrication process for devices with few quantum bits (qubits), which are suitable for proof-of-principle demonstrations of silicon-based quantum computation. The devices follow the Kane proposal to use the nuclear spins of 31P donors in 28Si as qubits, controlled by metal surface gates and measured using single electron transistors (SETs). The accurate registration of 31P donors to control gates and read-out SETs is achieved through the use of a self-aligned process which incorporates electron beam patterning, ion implantation and triple-angle shadow-mask metal evaporation

    Radio-frequency operation of a double-island single-electron transistor

    Full text link
    We present results on a double-island single-electron transistor (DISET) operated at radio-frequency (rf) for fast and highly sensitive detection of charge motion in the solid state. Using an intuitive definition for the charge sensitivity, we compare a DISET to a conventional single-electron transistor (SET). We find that a DISET can be more sensitive than a SET for identical, minimum device resistances in the Coulomb blockade regime. This is of particular importance for rf operation where ideal impedance matching to 50 Ohm transmission lines is only possible for a limited range of device resistances. We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together with a demonstration of single-shot detection of small (<=0.1e) charge signals on microsecond timescales.Comment: 6 pages, 6 figure

    Observing sub-microsecond telegraph noise with the radio frequency single electron transistor

    Full text link
    Telegraph noise, which originates from the switching of charge between meta-stable trapping sites, becomes increasingly important as device sizes approach the nano-scale. For charge-based quantum computing, this noise may lead to decoherence and loss of read out fidelity. Here we use a radio frequency single electron transistor (rf-SET) to probe the telegraph noise present in a typical semiconductor-based quantum computer architecture. We frequently observe micro-second telegraph noise, which is a strong function of the local electrostatic potential defined by surface gate biases. We present a method for studying telegraph noise using the rf-SET and show results for a charge trap in which the capture and emission of a single electron is controlled by the bias applied to a surface gate.Comment: Accepted for publication in Journal of Applied Physics. Comments always welcome, email [email protected], [email protected]

    Development and operation of the twin radio frequency single electron transistor for solid state qubit readout

    Full text link
    Ultra-sensitive detectors and readout devices based on the radio frequency single electron transistor (rf-SET) combine near quantum-limited sensitivity with fast operation. Here we describe a twin rf-SET detector that uses two superconducting rf-SETs to perform fast, real-time cross-correlated measurements in order to distinguish sub-electron signals from charge noise on microsecond time-scales. The twin rf-SET makes use of two tuned resonance circuits to simultaneously and independently address both rf-SETs using wavelength division multiplexing (WDM) and a single cryogenic amplifier. We focus on the operation of the twin rf-SET as a charge detector and evaluate the cross-talk between the two resonance circuits. Real time suppression of charge noise is demonstrated by cross correlating the signals from the two rf-SETs. For the case of simultaneous operation, the rf-SETs had charge sensitivities of δqSET1=7.5μe/Hz\delta q_{SET1} = 7.5 \mu e/\sqrt{Hz} and δqSET2=4.4μe/Hz\delta q_{SET2} = 4.4 \mu e/\sqrt{Hz}.Comment: Updated version, including new content. Comments most welcome: [email protected] or [email protected]

    Experimental study of super-rotation in a magnetostrophic spherical Couette flow

    Get PDF
    We report measurements of electric potentials at the surface of a spherical container of liquid sodium in which a magnetized inner core is differentially rotating. The azimuthal angular velocities inferred from these potentials reveal a strong super-rotation of the liquid sodium in the equatorial region, for small differential rotation. Super-rotation was observed in numerical simulations by Dormy et al. [1]. We find that the latitudinal variation of the electric potentials in our experiments differs markedly from the predictions of a similar numerical model, suggesting that some of the assumptions used in the model - steadiness, equatorial symmetry, and linear treatment for the evolution of both the magnetic and velocity fields - are violated in the experiments. In addition, radial velocity measurements, using ultrasonic Doppler velocimetry, provide evidence of oscillatory motion near the outer sphere at low latitude: it is viewed as the signature of an instability of the super-rotating region
    • …
    corecore