280 research outputs found

    Processing Techniques of MOS Capacitors

    Get PDF
    Variations in both MOS capacitor structure and fabrication process were characterized using 1MHz C-V measurements. This involved processing MOS capacitors with and without backside oxide, and wet etching versus plasma ashing photoresist. The experimental results show large flatband shifts in wafers that were plasma ashed. ~ longer than expected anneal was utilized to reduce the C-V shifts caused by positive charge build-up in the oxide. The backside oxide did not grossly affect the capacitance measurements

    New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data

    Get PDF
    The primary objective of the mapping effort is to produce a geologic map of the Argyre basin and surrounding region at 1:5,000,000 scale in both digital and print formats that will detail the stratigraphic and crosscutting relations among rock materials and landforms (30 deg. S to 65 deg. S, 290 deg. E to 340 deg E). There has not been a detailed geologic map produced of the Argyre region since the Viking-era mapping investigation. The mapping tasks include stratigraphic mapping, crater counting, feature mapping, quantitative landform analysis, and spectroscopic/ stratigraphic investigation feature mapping. The regional geologic mapping investigation includes the Argyre basin floor and rim materials, the transition zone that straddles the Thaumasia plateau, which includes Argyre impactrelated modification, and the southeast margin of the Thaumasia plateau using important new data sets from the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter. The geologic information unfolded by this new mapping project will be useful to the community for constraining the regional geology, paleohydrology, and paleoclimate, which includes but is not limited to the assessment of: (1) whether the Argyre basin contained lakes, (2) the extent of reported flooding and glaciation, (3) existing interpretations of the origin of the narrow ridges located in the southeast part of the basin floor, and (4) the extent of Argyre-related tectonism and its influence on the surrounding regions

    On the metric dimension of corona product graphs

    Get PDF
    Given a set of vertices S={v1,v2,...,vk}S=\{v_1,v_2,...,v_k\} of a connected graph GG, the metric representation of a vertex vv of GG with respect to SS is the vector r(v∣S)=(d(v,v1),d(v,v2),...,d(v,vk))r(v|S)=(d(v,v_1),d(v,v_2),...,d(v,v_k)), where d(v,vi)d(v,v_i), i∈{1,...,k}i\in \{1,...,k\} denotes the distance between vv and viv_i. SS is a resolving set for GG if for every pair of vertices u,vu,v of GG, r(u∣S)≠r(v∣S)r(u|S)\ne r(v|S). The metric dimension of GG, dim(G)dim(G), is the minimum cardinality of any resolving set for GG. Let GG and HH be two graphs of order n1n_1 and n2n_2, respectively. The corona product G⊙HG\odot H is defined as the graph obtained from GG and HH by taking one copy of GG and n1n_1 copies of HH and joining by an edge each vertex from the ithi^{th}-copy of HH with the ithi^{th}-vertex of GG. For any integer k≥2k\ge 2, we define the graph G⊙kHG\odot^k H recursively from G⊙HG\odot H as G⊙kH=(G⊙k−1H)⊙HG\odot^k H=(G\odot^{k-1} H)\odot H. We give several results on the metric dimension of G⊙kHG\odot^k H. For instance, we show that given two connected graphs GG and HH of order n1≥2n_1\ge 2 and n2≥2n_2\ge 2, respectively, if the diameter of HH is at most two, then dim(G⊙kH)=n1(n2+1)k−1dim(H)dim(G\odot^k H)=n_1(n_2+1)^{k-1}dim(H). Moreover, if n2≥7n_2\ge 7 and the diameter of HH is greater than five or HH is a cycle graph, then $dim(G\odot^k H)=n_1(n_2+1)^{k-1}dim(K_1\odot H).

    Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process

    Get PDF
    Hydrothermal processes in impact environments on water-rich bodies such as Mars and Earth are relevant to the origins of life. Dawn mapping of dwarf planet (1) Ceres has identified similar deposits within Occator crater. Here we show using Dawn high-resolution stereo imaging and topography that Ceres' unique composition has resulted in widespread mantling by solidified water- and salt-rich mud-like impact melts with scattered endogenic pits, troughs, and bright mounds indicative of outgassing of volatiles and periglacial-style activity during solidification. These features are distinct from and less extensive than on Mars, indicating that Occator melts may be less gas-rich or volatiles partially inhibited from reaching the surface. Bright salts at Vinalia Faculae form thin surficial precipitates sourced from hydrothermal brine effusion at many individual sites, coalescing in several larger centers, but their ages are statistically indistinguishable from floor materials, allowing for but not requiring migration of brines from deep crustal source(s). Dawn mission's second extended phase provided high resolution observations of Occator crater of the dwarf planet Ceres. Here, the authors show stereo imaging and topographic maps of this crater revealing the influence of crustal composition on impact related melt and hydrothermal processes, and compare features to those on Mars, Earth and the Moon

    Sustainable Management of Water Resources

    Get PDF
    The Dawn spacecraft arrived at dwarf planet Ceres in spring 2015 and imaged its surface from four successively lower polar orbits at ground sampling dimensions between ∼1.3 km/px and ∼35 m/px. To understand the geological history of Ceres a mapping campaign was initiated to produce a set of 15 quadrangle-based geological maps using the highest-resolution Framing Camera imagery. Here we present the geological map of the Ac-10 Rongo Quadrangle, which is located at the equator encompassing the region from 22°N to 22°S and 288° to 360°E. The total relief within the quadrangle is 11.1 km with altitudes ranging from about −7.3 km to +3.8 km. We identified nine geological units based on surface morphology and surface textural characteristics. The dominant and most widespread unit is the cratered terrain (crt) representing ancient reworked crustal material. Its consistent formation age across the quadrangle is 1.8 Ga. Two edifices (unit th), Ahuna Mons and an unnamed tholus within Begbalel Crater, are interpreted to be of (cryo)volcanic origin. The southwest portion of the quadrangle is dominated by ejecta material (Ye) emplaced during the formation of the 260-km diameter Yalode impact basin at about 580 Ma. Rayed crater ejecta material (cr) is dominant in the eastern part of the quadrangle but also occurs in isolated patches up to a distance of 455 km from the 34 km diameter source crater Haulani. The remaining five geological units also represent impact crater materials: degraded rim (crdeg), bright crater (cb), hummocky floor (cfh), talus (ta), and crater (c) materials. Widespread Yalode and Haulani ejecta materials can potentially be utilised as stratigraphic markers. Therefore, it is essential to consistently map their full areal extent and to date their formations using impact crater statistics

    The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion

    Get PDF
    Before acquiring highest-resolution data of Ceres, questions remained about the emplacement mechanism and source of Occator crater's bright faculae. Here we report that brine effusion emplaced the faculae in a brine-limited, impact-induced hydrothermal system. Impact-derived fracturing enabled brines to reach the surface. The central faculae, Cerealia and Pasola Facula, postdate the central pit, and were primarily sourced from an impact-induced melt chamber, with some contribution from a deeper, pre-existing brine reservoir. Vinalia Faculae, in the crater floor, were sourced from the laterally extensive deep reservoir only. Vinalia Faculae are comparatively thinner and display greater ballistic emplacement than the central faculae because the deep reservoir brines took a longer path to the surface and contained more gas than the shallower impact-induced melt chamber brines. Impact-derived fractures providing conduits, and mixing of impact-induced melt with deeper endogenic brines, could also allow oceanic material to reach the surfaces of other large icy bodies. The second extended phase of the Dawn mission provided high resolution observations of Occator crater of the dwarf planet Ceres. Here, the authors show that the central faculae were sourced in an impact-induced melt chamber, with a contribution from the deep brine reservoir, while the Vinalia Faculae were sourced by the deep brine reservoir alone

    Geologic mapping of the Urvara and Yalode Quadrangles of Ceres

    Get PDF
    We conducted geologic mapping of the Urvara (Ac-13) and Yalode (Ac-14) Quadrangles (21–66°S, 180–360°E) of the dwarf planet Ceres utilizing morphologic, topographic, and compositional information acquired by NASA's Dawn mission. The geologic characteristics of the two large impact basins Urvara (170 km diameter) and Yalode (260 km diameter) and their surroundings were investigated using Dawn Framing Camera datasets, including Survey (415 m/pixel), HAMO (140 m/pixel), and LAMO (35 m/pixel) images and mosaics, color and color ratio images, and DTMs derived from stereo-photogrammetry. Geologic mapping demonstrates that impact cratering has dominated the geologic history of the Urvara and Yalode Quadrangles, with early cratered terrain formation followed by formation of the large basins and widespread emplacement of basin-related smooth material. Impact craters display a wide range of preservation states from nearly completely buried/degraded forms to more recent pristine craters with terraced inner walls and lobate ejecta deposits. Cross-cutting relationships and morphologic signatures show that the Urvara impact followed the Yalode impact, consistent with ages derived from crater size-frequency distributions (580 ± 40 Ma for Yalode and 550 ± 50 Ma for Urvara). Observed differences in basin materials and rim morphology suggest heterogeneities in the substrate excavated by impact. Smooth deposits that cover large areas of the quadrangles, including the basin floors, rims, and exterior zones, are interpreted to be dominated by Urvara ejecta but Yalode ejecta and localized ice-rich flow material may be minor components. Geologic mapping results and simulations of ejecta emplacement suggest that Urvara and Yalode ejecta deposits extend for large distances (more than two crater diameters from the basin centers) and may serve as important stratigraphic markers for the geologic record of Ceres

    NASA Planetary Mission Concept Study: Assessing: Dwarf Planet Ceres' past and Present Habitability Potential

    Get PDF
    The Dawn mission revolutionized our understanding of Ceres during the same decade that has also witnessed the rise of ocean worlds as a research and exploration focus. We will report progress on the Planetary Mission Concept Study (PMCS) on the future exploration of Ceres under the New Frontiers or Flagship program that was selected for NASA funding in October 2019. At the time this writing, the study was just kicked off, hence this abstract reports the study plan as presented in the proposal
    • …
    corecore