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a b s t r a c t

Given a set of vertices S = {v1, v2, . . . , vk} of a connected graph G, the metric represen-
tation of a vertex v of G with respect to S is the vector r(v|S) = (d(v, v1), d(v, v2), . . . ,
d(v, vk)), where d(v, vi), i ∈ {1, . . . , k} denotes the distance between v and vi. S is a
resolving set for G if for every pair of distinct vertices u, v of G, r(u|S) ≠ r(v|S). The metric
dimension ofG, dim(G), is theminimumcardinality of any resolving set forG. LetG andH be
two graphs of order n1 and n2, respectively. The corona productG⊙H is defined as the graph
obtained from G and H by taking one copy of G and n1 copies of H and joining by an edge
each vertex from the ith-copy ofH with the ith-vertex ofG. For any integer k ≥ 2, we define
the graph G⊙

k H recursively from G ⊙ H as G⊙
k H = (G⊙

k−1 H) ⊙ H . We give several
results on themetric dimension of G⊙

k H . For instance, we show that given two connected
graphs G and H of order n1 ≥ 2 and n2 ≥ 2, respectively, if the diameter of H is at most
two, then dim(G⊙

k H) = n1(n2+1)k−1 dim(H). Moreover, if n2 ≥ 7 and the diameter ofH
is greater than five or H is a cycle graph, then dim(G⊙

k H) = n1(n2 + 1)k−1 dim(K1 ⊙ H).
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [1], and
Slater [2], to define the same structure in a graph. After these papers were published, several authors developed diverse
theoretical works on this topic [3–10]. Slater described the usefulness of these ideas into long range aids to navigation [2].
Also, these concepts have some applications in chemistry for representing chemical compounds [11,12] or to problems
of pattern recognition and image processing, some of which involve the use of hierarchical data structures [13]. Other
applications of this concept to navigation of robots in networks and other areas appear in [6,8,14]. Some variations on
resolvability or location have been appearing in the literature, like those about conditional resolvability [9], locating
domination [15], resolving domination [16] and resolving partitions [5,17–19]. In this article we study themetric dimension
of corona product graphs.

We begin by giving some basic concepts and notations. Let G = (V , E) be a simple graph of order n = |V |. Let
u, v ∈ V be two different vertices in G, the distance dG(u, v) between two vertices u and v of G is the length of a shortest
path between u and v. If there is no ambiguity, we will use the notation d(u, v) instead of dG(u, v). The diameter of G is
defined as D(G) = maxu,v∈V {d(u, v)}. Given u, v ∈ V , u ∼ v means that u and v are adjacent vertices. Given a set of
vertices S = {v1, v2, . . . , vk} of a connected graph G, the metric representation of a vertex v ∈ V with respect to S is the
vector r(v|S) = (d(v, v1), d(v, v2), . . . , d(v, vk)). We say that S is a resolving set for G if for every pair of distinct vertices
u, v ∈ V , r(u|S) ≠ r(v|S). Themetric dimension of G is the minimum cardinality of any resolving set for G, and it is denoted
by dim(G).
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Let G and H be two graphs of order n1 and n2, respectively. The corona product G ⊙ H is defined as the graph obtained
from G and H by taking one copy of G and n1 copies of H and joining by an edge each vertex from the ith-copy of H with the
ith-vertex of G. We will denote by V = {v1, v2, . . . , vn1} the set of vertices of G and by Hi = (Vi, Ei) the copy of H such that
vi ∼ v for every v ∈ Vi. Notice that the corona graph K1 ⊙ H is isomorphic to the join graph K1 + H . For any integer k ≥ 2,
we define the graph G⊙

k H recursively from G ⊙ H as G⊙
k H = (G⊙

k−1 H) ⊙ H . We also note that the order of G⊙
k H is

n1(n2 + 1)k.

2. Metric dimension of corona product graphs

We begin by presenting the following useful facts.

Lemma 1. Let G = (V , E) be a connected graph of order n ≥ 2 and let H be a graph of order at least two. Let Hi = (Vi, Ei) be
the subgraph of G ⊙ H corresponding to the ith-copy of H.

(i) If u, v ∈ Vi, then dG⊙H(u, x) = dG⊙H(v, x) for every vertex x of G ⊙ H not belonging to Vi.
(ii) If S is a resolving set for G ⊙ H, then Vi ∩ S ≠ ∅ for every i ∈ {1, . . . , n}.
(iii) If S is a resolving set for G ⊙ H of minimum cardinality, then V ∩ S = ∅.
(iv) If H is a connected graph and S is a resolving set for G ⊙ H, then for every i ∈ {1, . . . , n}, S ∩ Vi is a resolving set for Hi.

Proof. (i) Let y = vi ∈ V . The result directly follows from the fact that dG⊙H(u, x) = dG⊙H(u, y)+dG⊙H(y, x) = dG⊙H(v, y)+
dG⊙H(y, x) = dG⊙H(v, x).

(ii) We suppose Vi ∩ S = ∅ for some i ∈ {1, . . . , n}. Let x, y ∈ Vi. By (i) we have dG⊙H(x, u) = dG⊙H(y, u) for every vertex
u ∈ S, which is a contradiction.

(iii) We will show that S ′
= S − V is a resolving set for G ⊙ H . Now let x, y be two different vertices of G ⊙ H . We have

the following cases.
Case 1: x, y ∈ Vi. By (i) we conclude that there exist v ∈ Vi ∩ S ′ such that dG⊙H(x, v) ≠ dG⊙H(y, v).
Case 2: x ∈ Vi and y ∈ Vj, i ≠ j. Let v ∈ Vi ∩ S ′. Then we have dG⊙H(x, v) ≤ 2 < 3 ≤ dG⊙H(y, v).
Case 3: x, y ∈ V . Let x = vi and let v ∈ Vi ∩ S ′. Then we have dG⊙H(x, v) = 1 < 1 + dG⊙H(y, x) = dG⊙H(y, v).
Case 4: x ∈ Vi and y ∈ V . If x ∼ y, then y = vi. Let vj ∈ V , j ≠ i, and let v ∈ Vj ∩ S ′. Then we have

dG⊙H(x, v) = 1 + dG⊙H(y, v) > dG⊙H(y, v). For x ≁ y = vl we take v ∈ Vl ∩ S ′ and we obtain dG⊙H(x, v) =

dG⊙H(x, y) + dG⊙H(y, v) > dG⊙H(y, v).
Therefore, S ′ is a resolving set for G ⊙ H .
(iv) Let Si = S ∩ Vi. For x ∈ Si or y ∈ Si the result is straightforward. We suppose x, y ∈ Vi − Si. Since S is a resolving set

for G⊙H , we have r(x|S) ≠ r(y|S). By (i), dG⊙H(x, u) = dG⊙H(y, u) for every vertex u of G⊙H not belonging to Vi. So, there
exists v ∈ Si such that dG⊙H(x, v) ≠ dG⊙H(y, v). Thus, either (v ∼ x and v ≁ y) or (v ≁ x and v ∼ y). In the first case we
have dG⊙H(x, v) = dHi(x, v) = 1 and dG⊙H(y, v) = 2 ≤ dHi(y, v). The case v ≁ x and v ∼ y is analogous. Therefore, Si is a
resolving set for Hi. �

Theorem 2. Let G and H be two connected graphs of order n1 ≥ 2 and n2 ≥ 2, respectively. Then,

dim(G⊙
k H) ≥ n1(n2 + 1)k−1 dim(H).

Proof. Let S be a resolving set of minimum cardinality in G ⊙ H . From Lemma 1(iii) we have that S ∩ V = ∅. Moreover, by
Lemma 1(ii) we have that for every i ∈ {1, . . . , n1} there exist a nonempty set Si ⊂ Vi such that S =

n1
i=1 Si. Now, by using

Lemma 1(iv) we have that Si is a resolving set for Hi. Hence, dim(G ⊙ H) = |S| =
∑n1

i=1 |Si| ≥
∑n1

i=1 dim(H) = n1 dim(H).
As a result, the lower bound follows. �

Theorem 3. Let G be a connected graph of order n1 ≥ 2 and let H be a graph of order n2 ≥ 2. If D(H) ≤ 2, then

dim(G⊙
k H) = n1(n2 + 1)k−1 dim(H).

Proof. Let Si ⊂ Vi be a resolving set for Hi and let S =
n1

i=1 Si. We will show that S is a resolving set for G ⊙ H . Let us
consider two different vertices x, y of G ⊙ H . We have the following cases.

Case 1: x, y ∈ Vi. Since D(Hi) ≤ 2, we have that r(x|Si) ≠ r(y|Si) leads to r(x|S) ≠ r(y|S).
Case 2: x ∈ Vi and y ∈ Vj, i ≠ j. Let v ∈ Si. Hence we have d(x, v) ≤ 2 < 3 ≤ d(y, v).
Case 3: x, y ∈ V . Let x = vi. Then for every vertex v ∈ Si we have d(x, v) = 1 < d(y, x) + 1 = d(y, v).
Case 4: x ∈ Vi and y ∈ V . If x ∼ y, then let v ∈ Sj, for some j ≠ i. So we have d(x, v) = 1 + d(y, v) > d(y, v). Moreover,

if x ≁ y = vj, for v ∈ Sj we have d(x, v) = d(x, y) + d(y, v) > d(y, v).
Thus, for every different vertices x, y of G ⊙ H , we have r(x|S) ≠ r(y|S), as a consequence, dim(G ⊙ H) ≤ n1 dim(H).

Therefore, we have dim(G⊙
k H) ≤ n1(n2 + 1)k−1 dim(H). By Theorem 2 we conclude the proof. �

In order to show a consequence of the above theorem we present the following well-known result, where Kt denotes a
complete graph of order t, Ks,t denotes a complete bipartite graph of order s + t and Nt denotes an empty graph of order t .
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Lemma 4 ([6]). Let G be a connected graph of order n ≥ 4. Then dim(G) = n − 2 if and only if G = Ks,t , (s, t ≥ 1),G =

Ks + Nt , (s ≥ 1, t ≥ 2), or G = Ks + (K1 ∪ Kt), (s, t ≥ 1).

Corollary 5. Let G be a connected graph of order n1 ≥ 2 and let H be a graph of order n2 ≥ 4 and diameter D(H) ≤ 2. Then

dim(G⊙
k H) = n1(n2 + 1)k−1(n2 − 2)

if and only if H = Ks,t , (s, t ≥ 1); H = Ks + Nt , (s ≥ 1, t ≥ 2), or H = Ks + (K1 ∪ Kt), (s, t ≥ 1).

We recall that the wheel graph of order n+ 1 is defined asW1,n = K1 ⊙ Cn, where K1 is the singleton graph and Cn is the
cycle graph of order n. The metric dimension of the wheelW1,n was obtained by Buczkowski et al. in [20].

Remark 6 ([20]). LetW1,n be a wheel graph. Then

dim(W1,n) =


3 for n = 3, 6,
2 for n = 4, 5,
2n + 2

5


otherwise.

The fan graph Fn1,n2 is defined as the graph join Nn1 + Pn2 , where Nn1 is the empty graph of order n1 and Pn2 is the path
graph of order n2. The case n1 = 1 corresponds to the usual fan graphs. Notice that, for the metric dimension of fan graphs,
it is possible to find an equivalent result to Remark 6 which was obtained by Caceres et al. in [4].

Remark 7 ([4]). Let F1,n be a fan graph. Then

dim(F1,n) =


1 for n = 1,
2 for n = 2, 3,
3 for n = 6,
2n + 2

5


otherwise.

As a particular case of Theorem 3 we obtain the following results.

Corollary 8. Let G be a connected graph of order n1 ≥ 2. If H is a wheel graph or a fan graph of order n2 ≥ 8, then

dim(G⊙
k H) = n1(n2 + 1)k−1


2n2

5


.

Theorem 9. Let G be a connected graph of order n1 ≥ 2 and let H be a graph of order n2 ≥ 2. Let α be the number of connected
components of H of order greater than one and let β be the number of isolated vertices of H. Then

dim(G⊙
k H) ≤

n1(n2 + 1)k−1(n2 − α − 1) for α ≥ 1 and β ≥ 1,
n1(n2 + 1)k−1(n2 − α) for α ≥ 1 and β = 0,
n1(n2 + 1)k−1(n2 − 1) for α = 0.

Proof. We suppose α ≥ 1 and β ≥ 1. Let Ai be the set of vertices of G ⊙ H formed by all but one of the vertices per each
of the α connected components of Hi. If β ≥ 2 we define Bi to be the set of vertices of G ⊙ H formed by all but one of the
isolated vertices of Hi. If β = 1, we assume Bi = ∅. Let us show that S = ∪

n1
j=1(Aj ∪ Bj) is a resolving set for G ⊙ H . Let x, y

be two different vertices of G ⊙ H . We suppose x, y ∉ S. We have the following cases.
Case 1: x = vi ∈ V and y ∈ Vi. For every vertex u ∈ Vj ∩ S, j ≠ i, we obtain d(y, u) = d(y, x) + d(x, u) > d(x, u).
case 2: x = vi ∈ V and y ∉ Vi. For every v ∈ S ∩ Vi we have d(x, v) = 1 < d(y, v).
Case 3: x ∈ Vi and y ∈ Vj, j ≠ i. For every u ∈ Vi ∩ S we have d(x, u) ≤ 2 < 3 ≤ d(y, u).
Case 4: x, y ∈ Vi. We consider, without loss of generality, that x is not an isolated vertex inHi. Then there exists v ∈ Vi ∩S

such that v ∼ x, so d(x, v) = 1 < 2 = d(y, v).
Thus, for every two different vertices x, y of G ⊙ H , we obtain r(x|S) ≠ r(y|S) and, as a consequence, dim(G ⊙ H) ≤

n1(n2 − α − 1).
As above, if β = 0 then we take S = ∪

n1
j=1 Aj and we obtain dim(G ⊙ H) ≤ n1(n2 − α) and if α = 0, then we take

S = ∪
n1
j=1 Bj and we obtain dim(G ⊙ H) ≤ n1(n2 − 1). Note that if α = 0, then it is not necessary to consider Case 4. Thus,

the result follows. �

Corollary 10. Let G be a connected graph of order n1 ≥ 2 and let H be an unconnected graph of order n2 ≥ 2. Then

dim(G⊙
k H) = n1(n2 + 1)k−1(n2 − 1)

if and only if H ∼= Nn2 .
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Proof. In [21] the authors showed that dim(G ⊙ Nn2) = n1(n2 − 1). Hence, dim(G⊙
k Nn2) = n1(n2 + 1)k−1(n2 − 1).

Moreover, by the above theorem, if H is unconnected and H ≁= Nn2 , then dim(G⊙
k H) ≤ n1(n2 + 1)k−1(n2 − 2). �

Theorem 11. Let G and H be two connected graphs of order n1 ≥ 2 and n2 ≥ 3, respectively. Then

dim(G⊙
k H) = n1(n2 + 1)k−1(n2 − 1)

if and only if H ∼= Kn2 . Moreover, if H ≁= Kn2 , then

dim(G⊙
k H) ≤ n1(n2 + 1)k−1(n2 − 2).

Proof. Since dim(Kn2) = n2 − 1, by Theorem 3 we conclude dim(G⊙
k Kn2) = n1(n2 + 1)k−1(n2 − 1). On the contrary, we

suppose H ≁= Kn2 . Given a set X of vertices of H and a vertex v of H,NX (v) denotes the set of neighbors that v has in X:
NX (v) = {u ∈ X : u ∼ v}. Given two vertices a, b of H , let Xa,b be the set formed by all vertices of H different from a and b.
SinceH is a connected graph andH ≠ Kn2 , there exist at least two vertices a, b ofH such thatNXa,b(a) ≠ NXa,b(b). Let ai, bi be
the vertices corresponding to a, b, respectively, in the ith-copy Hi = (Vi, Ei) of H . Let S = ∪

n2
i=1(Vi − {ai, bi}). We will show

that S is a resolving set for G⊙H . Let x, y be two different vertices of G⊙H such that x, y ∉ S. We have the following cases.
Case 1: x = ai and y = bi. Since NXa,b(a) ≠ NXa,b(b) we have r(x|S) ≠ r(y|S).
Case 2: x = vi ∈ V and y ∈ Vi. For every v ∈ Vj − {aj, bj}, j ≠ i, we have d(y, v) = d(y, x) + d(x, v) > d(x, v). If x ∈ Vi

and y ∈ Vj, j ≠ i, then for every v ∈ Vi − {ai, bi} we have d(x, v) ≤ 2 < 3 ≤ d(y, v).
Case 3: x, y ∈ V . Say x = vi. Then for every v ∈ Vi − {ai, bi} we have d(x, v) = 1 < d(y, v).
Hence, for every two different vertices x, y of G⊙H , we obtain r(x|S) ≠ r(y|S). Thus, dim(G⊙H) ≤ n1(n2−2). Therefore,

the result follows. �

As we have shown in Corollary 5, the above bound is tight.

Theorem 12. Let G be a connected graph of order n1 ≥ 2 and let H be a graph of order n2 ≥ 2. Then

dim(G⊙
k H) ≤ n1(n2 + 1)k−1 dim(K1 ⊙ H).

Proof. We denote by K1 ⊙ Hi the subgraph of G ⊙ H , obtained by joining the vertex vi ∈ V with all vertices of Hi. For every
vi ∈ V , let Bi be a resolving set of minimum cardinality of K1 ⊙ Hi and let B =

n1
i=1 Bi. By Lemma 1(iii) we have that vi does

not belong to any resolving set of minimum cardinality for K1 ⊙ Hi. So, B does not contain any vertex from G. We will show
that B is a resolving set for G ⊙ H . Let x, y be two different vertices in G ⊙ H . We consider the following cases.

Case 1: x, y ∈ Vi. There exists u ∈ Bi such that dK1⊙Hi(x, u) ≠ dK1⊙Hi(y, u), which leads to dG⊙H(x, u) ≠ dG⊙H(y, u).
Case 2: x ∈ Vi and y ∈ Vj, i ≠ j. Let v ∈ Bi. We have dG⊙H(x, v) ≤ 2 < 3 ≤ dG⊙H(y, v).
Case 3: x, y ∈ V . Suppose now that x is adjacent to the vertices of Hi. Hence, for every vertex v ∈ Bi we have

dG⊙H(x, v) = 1 < dG⊙H(y, x) + 1 = dG⊙H(y, v).
Case 4: x ∈ Vi and y ∈ V . If x ∼ y, then for every vertex v ∈ Bj, with j ≠ i, we have dG⊙H(x, v) = 1 + dG⊙H(y, v) >

dG⊙H(y, v). Now, let us assume that x ≁ y. Hence, there exists v ∈ Bj adjacent to y, with j ≠ i. So, we have dG⊙H(x, v) =

dG⊙H(x, y) + 1 = dG⊙H(x, y) + dG⊙H(y, v) > dG⊙H(y, v).
Thus, for every two different vertices x, y of G ⊙ H , we have r(x|S) ≠ r(y|S) and, as a consequence, dim(G ⊙ H) ≤

n1 dim(K1 ⊙ H). Therefore, the result follows. �

Theorem 13. Let G be a connected graph of order n1 ≥ 2 and let H be a graph of order n2 ≥ 7. If D(H) ≥ 6 or H is a cycle
graph, then

dim(G⊙
k H) = n1(n2 + 1)k−1 dim(K1 ⊙ H).

Proof. Let S be a resolving set of minimum cardinality in G ⊙ H . By Lemma 1(iii) we have S ∩ V = ∅, as a consequence,
S = ∪

n1
i=1 Si, where Si ⊂ Vi. Notice that, by Lemma 1(ii), Si ≠ ∅ for every i ∈ {1, . . . , n1}. Now we differentiate two cases in

order to show that r(x|Si) ≠ (1, . . . , 1) for every x ∈ Vi − Si.
Case 1:H is a cycle graph of ordern2 ≥ 7. If r(a|Si) = (1, 1) for some a ∈ Vi−Si, then, sincen2 ≥ 7, there exist two vertices

x, y ∈ Vi − Si such that dHi(x, v) > 1 and dHi(y, v) > 1, for every v ∈ Si. Hence, dG⊙H(x, v) = dG⊙H(y, v) = 2 for every
v ∈ Si, which is a contradiction because, by Lemma 1(i), dG⊙H(x, v) = dG⊙H(y, v) for every vertex u of S not belonging to Si.

Case 2: D(H) ≥ 6. Let x, y ∈ Vi − Si. Since S is a resolving set for G ⊙ H , we have r(x|S) ≠ r(y|S). As we have noted
before, by Lemma 1(i) we have that dG⊙H(x, u) = dG⊙H(y, u) for every vertex u of G⊙H not belonging to Vi. So, there exists
v ∈ Si such that dG⊙H(x, v) ≠ dG⊙H(y, v) and, as a consequence, either (v ∼ x and v ≁ y) or (v ≁ x and v ∼ y). Now we
suppose that there exists a vertex a ∈ Vi − Si such that r(a|Si) = (1, 1, . . . , 1). If there exists a vertex b ∈ Vi − Si such that
dHi(b, u) > 1, for every u ∈ Si, then for every w ∈ Vi − (Si ∪ {a, b}), there exists v ∈ Si such that w ∼ v. Then D(Hi) ≤ 5.
Moreover, if for every b ∈ Vi − Si there exists vb ∈ Si such that vb ∼ b, then D(H) ≤ 4. Therefore, if D(H) ≥ 6, then
r(a|Si) ≠ (1, 1, . . . , 1) for every a ∈ Vi − Si.
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Now, we denote by K1 ⊙Hi the subgraph of G⊙H , obtained by joining the vertex vi ∈ V with all vertices of the ith-copy
of H . In both the above cases we have r(vi|Si) = (1, 1, . . . , 1) ≠ r(x|Si) for every x ∈ Vi − Si, so Si is a resolving set for
K1 ⊙ Hi. Hence, dim(K1 ⊙ Hi) ≤ |Si|, for every i ∈ {1, . . . , n1}. Thus, dim(G ⊙ H) ≥ n1 dim(K1 ⊙ Hi) and, as a consequence,
dim(G⊙

k H) ≥ n1(n2 + 1)k−1 dim(K1 ⊙ H). We conclude the proof by Theorem 12. �

Corollary 14. Let G be a connected graph of order n1 ≥ 2.

(i) If n2 ≥ 7, then dim(G⊙
k Cn2) = n1(n2 + 1)k−1


2n2+2

5


.

(ii) If n2 ≥ 7, then dim(G⊙
k Pn2) = n1(n2 + 1)k−1


2n2+2

5


.

All our previous results concern to G ⊙ H for H of order at least two. Now we consider the case H ∼= K1. We obtain a
general bound for dim(G⊙

k K1) and, when G is a tree, we give the exact value for this parameter.

Claim 15. Let G be a simple graph. If v is a vertex of degree greater than one in G, then for every vertex u adjacent to v there
exists a vertex x ≠ u, v of G, such that d(v, x) ≠ d(u, x) + 1.

The following lemma obtained in [20] is useful to obtain the next result.

Lemma 16 ([20]). If G1 is a graph obtained by adding a pendant edge to a nontrivial connected graph G, then dim(G) ≤

dim(G1) ≤ dim(G) + 1.

Theorem 17. For every connected graph G of order n ≥ 2,

dim(G⊙
k K1) ≤ 2k−1n − 1.

Proof. If G ∼= K2, then dim(K2 ⊙ K1) = dim(P4) = 1. So, let us suppose G ≁= K2. Let us suppose, without loss of generality,
that vn is a vertex of degree greater than one in G and let S = V − {vn}. For every i ∈ {1, . . . , n}, let ui be the pendant
vertex of vi in G ⊙ K1. We will show that S is a resolving set for G ⊙ K1. Let x, y be two different vertices of G ⊙ K1. If
x = ui and y = uj, i ≠ j, then we have either i ≠ n or j ≠ n. Let us suppose for instance i ≠ n. So, we obtain that
d(x, vi) = 1 ≠ d(y, vi). On the other hand, if x = vn and y = ui, then let us suppose d(x, vi) = 1. Since vn is a vertex
of degree greater than one in G, by Claim 15, there exists a vertex vj ∈ S such that d(x, vj) ≠ d(vi, vj) + 1. So, we have
d(x, vj) ≠ d(vi, vj) + 1 = d(vi, vj) + d(ui, vi) = d(y, vi) + d(vi, vj) = d(y, vj). Therefore, for every different vertices x, y of
G ⊙ K1 we have r(x|S) ≠ r(y|S) and, as a consequence, dim(G ⊙ K1) ≤ n − 1. Therefore, dim(G⊙

k K1) ≤ 2k−1n − 1. �

By Lemma 16 we have dim(Kn ⊙ K1) ≥ dim(Kn) = n − 1. Thus, for k = 1 the above bound is achieved for the graph
G = Kn.

To present the next result, we need additional definitions. A vertex of degree at least 3 in a graph Gwill be called amajor
vertex of G. Any vertex u of degree one is said to be a terminal vertex of a major vertex v if d(u, v) < d(u, w) for every other
major vertex w of G. The terminal degree of a major vertex v is the number of terminal vertices of v. A major vertex v is an
exterior major vertex if it has positive terminal degree. Given a graph G, n1(G) denotes the number of vertices of degree one
and ex(G) denotes the number of exterior major vertices of G.

Lemma 18 ([6,1,2]). If T is a tree that is not a path, then dim(T ) = n1(T ) − ex(T ).

Theorem 19. For any tree T of order n ≥ 3,

dim(T ⊙
k K1) =


n1(T ) for k = 1,
2k−2n for k ≥ 2.

Proof. If T is a path of order n ≥ 3, thenwe have dim(T ⊙K1) = 2 = n1(T ). Now, if T is not a path, then by using Lemma 18,
since T ⊙ K1 is a tree, n1(T ⊙ K1) = n and ex(T ⊙ K1) = n − n1(T ), we obtain the result for k = 1. Since for every tree T of
order nwe have n1(T ⊙ K1) = n, we obtain the result for k ≥ 2. �
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