1,175 research outputs found

    High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures

    Get PDF
    We present high field magneto-transport data from a range of 30nm wide InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between 1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess of 6 m2V-1s-1. It is found that the Landau level broadening decreases with carrier density and beating patterns are observed in the magnetoresistance with non-zero node amplitudes in samples with the narrowest broadening despite the presence of a large g-factor. The beating is attributed to Rashba splitting phenomenon and Rashba coupling parameters are extracted from the difference in spin populations for a range of samples and gate biases. The influence of Landau level broadening and spin-dependent scattering rates on the observation of beating in the Shubnikov-de Haas oscillations is investigated by simulations of the magnetoconductance. Data with non-zero beat node amplitudes are accompanied by asymmetric peaks in the Fourier transform, which are successfully reproduced by introducing a spin-dependent broadening in the simulations. It is found that the low-energy (majority) spin up state suffers more scattering than the high-energy (minority) spin down state and that the absence of beating patterns in the majority of (lower density) samples can be attributed to the same effect when the magnitude of the level broadening is large

    Molecular Tracers of Embedded Star Formation in Ophiuchus

    Full text link
    In this paper we analyze nine SCUBA cores in Ophiuchus using the second-lowest rotational transitions of four molecular species (12CO, 13CO, C18O, and C17O) to search for clues to the evolutionary state and star-formation activity within each core. Specifically, we look for evidence of outflows, infall, and CO depletion. The line wings in the CO spectra are used to detect outflows, spectral asymmetries in 13CO are used to determine infall characteristics, and a comparison of the dust emission (from SCUBA observations) and gas emission (from C18O) is used to determine the fractional CO freeze-out. Through comparison with Spitzer observations of protostellar sources in Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole indicators of the evolutionary state of each core. This study is an important pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in order to determine whether or not the cold dust clumps detected by SCUBA-2 are protostellar or starless objects. Our classification of the evolutionary state of the cores (based on molecular line maps and SCUBA observations) is in agreement with the Spitzer designation for six or seven of the nine SCUBA cores. However, several important caveats exist in the interpretation of these results, many of which large mapping surveys like the GBS may be able to overcome to provide a clearer picture of activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in the PAS

    Shoulder posture and median nerve sliding

    Get PDF
    Background: Patients with upper limb pain often have a slumped sitting position and poorshoulder posture. Pain could be due to poor posture causing mechanical changes (stretch; localpressure) that in turn affect the function of major limb nerves (e.g. median nerve). This studyexamines (1) whether the individual components of slumped sitting (forward head position, trunkflexion and shoulder protraction) cause median nerve stretch and (2) whether shoulderprotraction restricts normal nerve movements.Methods: Longitudinal nerve movement was measured using frame-by-frame cross-correlationanalysis from high frequency ultrasound images during individual components of slumped sitting.The effects of protraction on nerve movement through the shoulder region were investigated byexamining nerve movement in the arm in response to contralateral neck side flexion.Results: Neither moving the head forward or trunk flexion caused significant movement of themedian nerve. In contrast, 4.3 mm of movement, adding 0.7% strain, occurred in the forearm duringshoulder protraction. A delay in movement at the start of protraction and straightening of thenerve trunk provided evidence of unloading with the shoulder flexed and elbow extended and thescapulothoracic joint in neutral. There was a 60% reduction in nerve movement in the arm duringcontralateral neck side flexion when the shoulder was protracted compared to scapulothoracicneutral.Conclusion: Slumped sitting is unlikely to increase nerve strain sufficient to cause changes tonerve function. However, shoulder protraction may place the median nerve at risk of injury, sincenerve movement is reduced through the shoulder region when the shoulder is protracted andother joints are moved. Both altered nerve dynamics in response to moving other joints and localchanges to blood supply may adversely affect nerve function and increase the risk of developingupper quadrant pain

    Chiminey: Reliable Computing and Data Management Platform in the Cloud

    Full text link
    The enabling of scientific experiments that are embarrassingly parallel, long running and data-intensive into a cloud-based execution environment is a desirable, though complex undertaking for many researchers. The management of such virtual environments is cumbersome and not necessarily within the core skill set for scientists and engineers. We present here Chiminey, a software platform that enables researchers to (i) run applications on both traditional high-performance computing and cloud-based computing infrastructures, (ii) handle failure during execution, (iii) curate and visualise execution outputs, (iv) share such data with collaborators or the public, and (v) search for publicly available data.Comment: Preprint, ICSE 201

    High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures

    Get PDF
    We present high field magneto-transport data from a range of 30nm wide InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between 1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess of 6 m2V-1s-1. It is found that the Landau level broadening decreases with carrier density and beating patterns are observed in the magnetoresistance with non-zero node amplitudes in samples with the narrowest broadening despite the presence of a large g-factor. The beating is attributed to Rashba splitting phenomenon and Rashba coupling parameters are extracted from the difference in spin populations for a range of samples and gate biases. The influence of Landau level broadening and spin-dependent scattering rates on the observation of beating in the Shubnikov-de Haas oscillations is investigated by simulations of the magnetoconductance. Data with non-zero beat node amplitudes are accompanied by asymmetric peaks in the Fourier transform, which are successfully reproduced by introducing a spin-dependent broadening in the simulations. It is found that the low-energy (majority) spin up state suffers more scattering than the high-energy (minority) spin down state and that the absence of beating patterns in the majority of (lower density) samples can be attributed to the same effect when the magnitude of the level broadening is large

    Band anticrossing in GaNxSb1–x

    Get PDF
    Fourier transform infrared absorption measurements are presented from the dilute nitride semiconductor GaNSb with nitrogen incorporations between 0.2% and 1.0%. The divergence of transitions from the valence band to E– and E+ can be seen with increasing nitrogen incorporation, consistent with theoretical predictions. The GaNSb band structure has been modeled using a five-band k·p Hamiltonian and a band anticrossing fitting has been obtained using a nitrogen level of 0.78 eV above the valence band maximum and a coupling parameter of 2.6 eV

    Chaperone activity and structure of monomeric polypeptide binding domains of GroEL

    Get PDF
    The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 A resolution, shows a well-ordered domain with the same fold as in intact GroEL. We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a "minichaperone." This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for its various substrates in vivo, where the cavity may also be required for special functions

    The JCMT 12CO(3-2) Survey of the Cygnus X Region: I. A Pathfinder

    Full text link
    Cygnus X is one of the most complex areas in the sky. This complicates interpretation, but also creates the opportunity to investigate accretion into molecular clouds and many subsequent stages of star formation, all within one small field of view. Understanding large complexes like Cygnus X is the key to understanding the dominant role that massive star complexes play in galaxies across the Universe. The main goal of this study is to establish feasibility of a high-resolution CO survey of the entire Cygnus X region by observing part of it as a Pathfinder, and to evaluate the survey as a tool for investigating the star-formation process. A 2x4 degree area of the Cygnus X region has been mapped in the 12CO(3-2) line at an angular resolution of 15" and a velocity resolution of ~0.4km/s using HARP-B and ACSIS on the James Clerk Maxwell Telescope. The star formation process is heavily connected to the life-cycle of the molecular material in the interstellar medium. The high critical density of the 12CO(3-2) transition reveals clouds in key stages of molecule formation, and shows processes that turn a molecular cloud into a star. We observed ~15% of Cygnus X, and demonstrated that a full survey would be feasible and rewarding. We detected three distinct layers of 12CO(3-2) emission, related to the Cygnus Rift (500-800 pc), to W75N (1-1.8 kpc), and to DR21 (1.5-2.5 kpc). Within the Cygnus Rift, HI self-absorption features are tightly correlated with faint diffuse CO emission, while HISA features in the DR21 layer are mostly unrelated to any CO emission. 47 molecular outflows were detected in the Pathfinder, 27 of them previously unknown. Sequentially triggered star formation is a widespread phenomenon.Comment: 18 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure
    • …
    corecore