245 research outputs found

    Value of Star Players in the Digital Age

    Get PDF
    International professional football has become a billion dollar market worldwide. Up to half of the world\u27s inhabitants watch major events such as the FIFA World Cup or the UEFA Champions League Final. Central players and elements in this global advertising market are the clubs\u27 teams and the players themselves. Social media platforms today allow professional footballers to reach millions of people through private marketing as individuals, thereby creating their own brand. The brand and reach of each player is also a valuable resource for clubs in terms of player value and transfer activity. The outlined results in the following article show indicate a positive correlation between the social media value of professional players and the transfer activities of football clubs. Consequently, the impact of digitization on professional football can be shown by a relationship which has not been investigated in research to date

    Modeling Robotic Systems with Activity Flow Graphs

    Get PDF
    Autonomous robotic systems are becoming increasingly common in our society, with research efforts towards automated goods transportation, service robots and autonomous cars. These complex systems have to solve many different problems in order to function robustly. Two especially important areas of interest are perception and high level control. Intelligent systems have to perceive their surroundings in order to facilitate autonomy. With an understanding of the environment, they then can make their own decisions based on high level control policies defined by the developers. Robotic systems differ drastically in their sensory capabilities, their computational power, and their designated tasks. When developing algorithms, however, we need to have a common modeling framework that enables us to generalize and re-use existing solutions. A modular approach, which is coherent across different platforms, also allows faster prototyping of new systems. In this dissertation we develop a modeling framework based on data flow that achieves this goal. We first extend the existing Synchronous Data Flow (SDF) model and combine it with reactive programming ideas and finite-state machines. Together, these existing frameworks enable us to model many aspects of complex robotic systems. We apply this model to a robot in a warehouse scenario to demonstrate the viability of the approach. Using three disjoint formalisms to model a robotic system has many downsides. In a first unification step we merge SDF and reactive programming into Hybrid Flow Graphs (HFGs), where we explicitly model synchronous and asynchronous data flow. We then apply the HFG model to the perception system of an autonomous transportation robot. In a last step, we eliminate the need for separate finite-state machines by introducing the concept of activity into the data flow. We therefore unify the different aspects into a single and coherent framework which we call Activity Flow Graphs (AFGs). The flow of activity enables us to model high level state directly in the data flow graph. The result is a single computation graph that can express both perception and high level control aspects of any robotic system. We then demonstrate this with multiple high level robotic system models. Finally, we make use of the uniform AFG model to provide a single graphical user interface that allows a developer to rapidly prototype complete robotic systems. Since all aspects of a robot can be implemented using the same theoretical framework, there is no need to switch between different paradigms. The user interface is designed to give immediate feedback, which speeds up prototyping, testing and evaluation, as well as debugging when working with real robots.Autonome Roboter werden zunehmend zu einem wichtigen Bestandteil unserer Gesellschaft, in Bereichen wie dem automatisierten Gütertransport, in der Servicerobotik und bei autonomen Automobilen. Diese komplexen Systeme müssen viele Problem lösen, um robust zu funktionieren. Zwei sehr wichtige Anwendungsfelder sind die Umgebungswahrnehmung und die Ablaufplanung. Intelligente Systeme müssen ihre Umgebung wahrnehmen, um autonom agieren zu können. Mit einem Verständnis der Umwelt können sie Entscheidungen treffen, welche auf abstrakten Richtlinien der Entwickler basieren. Verschiedene Roboter weichen stark in ihren sensorischen Fähigkeiten, in ihrer Rechenleistung und in ihren zu lösenden Aufgaben voneinander ab. Bei der Entwicklung von Algorithmen wird jedoch ein einheitliches Modellierungssystem benötigt, welches die Wiederverwendung von existierenden Lösungen erlaubt. Ein modulares System, welches über mehrere Plattformen hinweg genutzt werden kann, ermöglicht eine schnellere Entwicklung von neuen Systemen. In dieser Dissertation wird ein auf Datenfluss basierendes Modell entwickelt, welches diese Anforderungen erfüllt. Zuerst wird das existierende Synchronous Data Flow (SDF) Modell erweitert und mit Elementen von reaktiver Programmierung und endlichen Zustandsautomaten kombiniert. Zusammen können so viele Aspekte von Robotern modelliert werden. Das Modell wird auf einen Roboter in einem Warenhausszenario angewandt, um den Ansatz zu validieren. Drei verschiedene Formalismen zur Modellierung von Robotern zu verwenden hat viele Nachteile. In einem ersten Vereinigungsschritt werden SDF und reaktive Programmierung zu hybriden Flussgraphen (HFG) kombiniert, bei denen synchroner und asynchroner Datenfluss explizit modelliert werden. Dann wird das HFG-Modell auf die Wahrnehmungsmodule eines autonomen Transportsystems angewandt. Anschließend wird der Bedarf eines Zustandsautomaten beseitigt, indem das Konzept der Aktivität in den Datenfluss eingeführt wird. Dadurch werden alle Aspekte in einem einzigen, schlüssigen System vereinigt, welches Aktivitätsflussgraph (AFG) genannt wird. Der Aktivitätsfluss ermöglicht es, den höheren Systemzustand direkt im Datenflussgraphen zu modellieren. Als Ergebnis erhalten wir einen einzigen Berechnungsgraphen, der sowohl zur Beschreibung der Umgebungswahrnehmung als auch zur Kontrolle der höheren Abläufe benutzt werden kann. Dies wird anhand mehrerer Robotersysteme demonstriert. Eine graphische Benutzerschnittstelle wird bereitgestellt, welche von dem einheitlichen Modell Gebrauch macht, um ein schnelles Prototyping von Robotern zu ermöglichen. Da alle Aspekte mit demselben System modelliert werden, muss nicht zwischen verschiedenen Paradigmen gewechselt werden. Die Nutzerschnittstelle erleichtert Entwicklung, Test und Validierung von Algorithmen sowie das Auffinden von Fehlern bei echten Robotern

    Parameters Influencing Lane Flow Distribution on Multilane Freeways in PTV Vissim

    Get PDF
    In a parameter study, we systematically varied parameter values, and quantified the resulting traffic flow in each individual lane. We modeled two-, three-, and four-lane freeway sections with the microscopic traffic flow simulation tool PTV Vissim. We compared the results with findings from literature. Simulations using car following model Wiedemann 99 fit better to empirical studies than those using Wiedemann 74. Empirically determinable parameters, that have a relevant influence on lane flow distribution are desired speed distributions (mean for heavy-duty vehicles and standard deviation for cars), heavy-duty vehicle share, and the gradient of the section. Additionally, the driving behavior parameters CC1 (headway time), CC3 (threshold for entering following), and safety distance reduction factor have an influence. As CC1 is one of the most relevant parameters for calibrating capacity, CC3 and the safety distance reduction factor remain for lane flow adjustment

    Efficient Traffic Assignment for Public Transit Networks

    Get PDF
    We study the problem of computing traffic assignments for public transit networks: Given a public transit network and a demand (i.e. a list of passengers, each with associated origin, destination, and departure time), the objective is to compute the utilization of every vehicle. Efficient assignment algorithms are a core component of many urban traffic planning tools. In this work, we present a novel algorithm for computing public transit assignments. Our approach is based upon a microscopic Monte Carlo simulation of individual passengers. In order to model realistic passenger behavior, we base all routing decisions on travel time, number of transfers, time spent walking or waiting, and delay robustness. We show how several passengers can be processed during a single scan of the network, based on the Connection Scan Algorithm [Dibbelt et al., LNCS Springer 2013], resulting in a highly efficient algorithm. We conclude with an experimental study, showing that our assignments are comparable in terms of quality to the state-of-the-art. Using the parallelized version of our algorithm, we are able to compute a traffic assignment for more than ten million passengers in well below a minute, which outperforms previous works by more than an order of magnitude

    Somatostatin receptor-directed molecular imaging for therapeutic decision-making in patients with medullary thyroid carcinoma

    Get PDF
    BACKGROUND: Somatostatin receptor (SSTR) positron emission tomography/computed tomography (PET/CT) is increasingly deployed in the diagnostic algorithm of patients affected with medullary thyroid carcinoma (MTC). We aimed to assess the role of SSTR-PET/CT for therapeutic decision making upon restaging. METHODS: 23 pretreated MTC patients underwent SSTR-PET/CT and were discussed in our interdisciplinary tumor board. Treatment plans were initiated based on scan results. By comparing the therapeutic regimen before and after the scan, we assessed the impact of molecular imaging on therapy decision. SSTR-PET was also compared to CT portion of the SSTR-PET/CT (as part of hybrid imaging). RESULTS: SSTR-PET/CT was superior in 9/23 (39.1%) subjects when compared to conventional CT and equivalent in 14/23 (60.9%). Those findings were further corroborated on a lesion-based level with 27/73 (37%) metastases identified only by functional imaging (equivalent to CT in the remaining 46/73 (63%)). Investigating therapeutic decision making, no change in treatment was initiated after PET/CT in 7/23 (30.4%) patients (tyrosine kinase inhibitor (TKI), 4/7 (57.2%); surveillance, 3/7 (42.8%)). Imaging altered therapy in the remaining 16/23 (69.6%). Treatment prior to PET/CT included surgery in 6/16 (37.5%) cases, followed by TKI in 4/16 (25%), active surveillance in 4/16 (25%), and radiation therapy (RTx) in 2/16 (12.5%) subjects. After SSTR-PET/CT, the therapeutic regimen was changed as follows: In the surgery group, 4/6 (66.7%) patients underwent additional surgery, and 1/6 (16.7%) underwent surveillance and TKI, respectively. In the TKI group, 3/4 (75%) individuals received another TKI and the remaining subject (1/4, 25%) underwent peptide receptor radionuclide therapy. In the surveillance group, 3/4 (75%) underwent surgery (1/4, (25%), RTx). In the RTx group, one patient was switched to TKI and another individual was actively monitored (1/2, 50%, respectively). Moreover, in the 16 patients in whom treatment was changed by molecular imaging, control disease rate was achieved in 12/16 (75%) during follow-up. CONCLUSIONS: In patients with MTC, SSTR-PET/CT was superior to CT alone and provided relevant support in therapeutic decision-making in more than two thirds of cases, with most patients being switched to surgical interventions or systemic treatment with TKI. As such, SSTR-PET/CT can guide the referring treating physician towards disease-directed treatment in various clinical scenarios

    Comparison of PET/CT-based eligibility according to VISION and TheraP trial criteria in end-stage prostate cancer patients undergoing radioligand therapy

    Get PDF
    Background Two randomized clinical trials demonstrated the efficacy of prostate-specific membrane antigen (PSMA) radioligand therapy (PSMA RLT) in metastatic castration-resistant prostate cancer (mCRPC). While the VISION trial used criteria within PSMA PET/CT for inclusion, the TheraP trial used dual tracer imaging including FDG PET/CT. Therefore, we investigated whether the application of the VISION criteria leads to a benefit in overall survival (OS) or progression-free survival (PFS) for men with mCRPC after PSMA RLT. Methods Thirty-five men with mCRPC who had received PSMA RLT as a last-line option and who had undergone pretherapeutic imaging with FDG and [68Ga]Ga-PSMA I&T or [18F]PSMA-1007 were studied. Therapeutic eligibility was retrospectively evaluated using the VISION and TheraP study criteria. Results 26 of 35 (74%) treated patients fulfilled the VISION criteria (= VISION+) and only 17 of 35 (49%) fulfilled the TheraP criteria (= TheraP+). Significantly reduced OS and PFS after PSMA RLT was observed in patients rated VISION− compared to VISION+ (OS: VISION−: 3 vs. VISION+: 12 months, hazard ratio (HR) 3.1, 95% confidence interval (CI) 1.0–9.1, p < 0.01; PFS: VISION−: 1 vs. VISION+: 5 months, HR 2.7, 95% CI 1.0–7.8, p < 0.01). For patients rated TheraP−, no significant difference in OS but in PFS was observed compared to TheraP+ patients (OS: TheraP−: 5.5 vs. TheraP+: 11 months, HR 1.6, 95% CI 0.8–3.3, p = 0.2; PFS: TheraP−: 1 vs. TheraP+: 6 months, HR 2.2, 95% CI 1.0–4.5, p < 0.01). Conclusion Retrospective application of the inclusion criteria of the VISION study leads to a benefit in OS and PFS after PSMA RL, whereas TheraP criteria appear to be too strict in patients with end-stage prostate cancer. Thus, performing PSMA PET/CT including a contrast-enhanced CT as proposed in the VISION trial might be sufficient for treatment eligibility of end-stage prostate cancer patients

    Associations between normal organs and tumor burden in patients imaged with fibroblast activation protein inhibitor-directed positron emission tomography

    Get PDF
    Several radiolabeled fibroblast activation protein targeted inhibitors (FAPI) have been developed for molecular imaging and therapy. A potential correlation of radiotracer uptake in normal organs and extent of tumor burden may have consequences for a theranostic approach using ligands structurally associated with [68Ga]Ga-FAPI, as one may anticipate decreased doses to normal organs in patients with extensive tumor load. In the present proof-of-concept study investigating patients with solid tumors, we aimed to quantitatively determine the normal organ biodistribution of [68Ga]Ga-FAPI-04, depending on the extent of tumor. Except for a trend towards significance in the myocardium, we did not observe any relevant associations between PET-based tumor burden and normal organs. Those preliminary findings may trigger future studies to determine possible implications for theranostic approaches and FAP-directed drugs, as one may expect an unchanged dose for normal organs even in patients with higher tumor load. Abstract (1) Background: We aimed to quantitatively investigate [68Ga]Ga-FAPI-04 uptake in normal organs and to assess a relationship with the extent of FAPI-avid tumor burden. (2) Methods: In this single-center retrospective analysis, thirty-four patients with solid cancers underwent a total of 40 [68Ga]Ga-FAPI-04 PET/CT scans. Mean standardized uptake values (SUVmean) for normal organs were established by placing volumes of interest (VOIs) in the heart, liver, spleen, pancreas, kidneys, and bone marrow. Total tumor burden was determined by manual segmentation of tumor lesions with increased uptake. For tumor burden, quantitative assessment included maximum SUV (SUVmax), tumor volume (TV), and fractional tumor activity (FTA = TV × SUVmean). Associations between uptake in normal organs and tumor burden were investigated by applying Spearman’s rank correlation coefficient. (3) Results: Median SUVmean values were 2.15 in the pancreas (range, 1.05–9.91), 1.42 in the right (range, 0.57–3.06) and 1.41 in the left kidney (range, 0.73–2.97), 1.2 in the heart (range, 0.46–2.59), 0.86 in the spleen (range, 0.55–1.58), 0.65 in the liver (range, 0.31–2.11), and 0.57 in the bone marrow (range, 0.26–0.94). We observed a trend towards significance for uptake in the myocardium and tumor-derived SUVmax (ρ = 0.29, p = 0.07) and TV (ρ = −0.30, p = 0.06). No significant correlation was achieved for any of the other organs: SUVmax (ρ ≤ 0.1, p ≥ 0.42), TV (ρ ≤ 0.11, p ≥ 0.43), and FTA (ρ ≤ 0.14, p ≥ 0.38). In a sub-analysis exclusively investigating patients with high tumor burden, significant correlations of myocardial uptake with tumor SUVmax (ρ = 0.44; p = 0.03) and tumor-derived FTA with liver uptake (ρ = 0.47; p = 0.02) were recorded. (4) Conclusions: In this proof-of-concept study, quantification of [68Ga]Ga-FAPI-04 PET showed no significant correlation between normal organs and tumor burden, except for a trend in the myocardium. Those preliminary findings may trigger future studies to determine possible implications for treatment with radioactive FAP-targeted drugs, as higher tumor load or uptake may not lead to decreased doses in the majority of normal organs

    Training on reporting and data system (RADS) for somatostatin-receptor targeted molecular imaging can reduce the test anxiety of inexperienced readers

    Get PDF
    PURPOSE: For somatostatin receptor (SSTR)-positron emission tomography/computed tomography (PET/CT), a standardized framework termed SSTR-reporting and data system (RADS) has been proposed. We aimed to elucidate the impact of a RADS-focused training on reader’s anxiety to report on SSTR-PET/CT, the motivational beliefs in learning such a system, whether it increases reader’s confidence, and its implementation in clinical routine. PROCEDURES: A 3-day training course focusing on SSTR-RADS was conducted. Self-report questionnaires were handed out prior to the course (Pre) and thereafter (Post). The impact of the training on the following categories was evaluated: (1) test anxiety to report on SSTR-PET/CT, (2) motivational beliefs, (3) increase in reader’s confidence, and (4) clinical implementation. To assess the effect size of the course, Cohen’s d was calculated (small, d = 0.20; large effect, d = 0.80). RESULTS: Of 22 participants, Pre and Post were returned by 21/22 (95.5%). In total, 14/21 (66.7%) were considered inexperienced (IR,  1 year). Applying SSTR-RADS, a large decrease in anxiety to report on SSTR-PET/CT was noted for IR (d =  − 0.74, P = 0.02), but not for ER (d = 0.11, P = 0.78). For the other three categories motivational beliefs, reader’s confidence, and clinical implementation, agreement rates were already high prior to the training and persisted throughout the course (P ≥ 0.21). CONCLUSIONS: A framework-focused reader training can reduce anxiety to report on SSTR-PET/CTs, in particular for inexperienced readers. This may allow for a more widespread adoption of this system, e.g., in multicenter trials for better intra- and interindividual comparison of scan results. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11307-022-01712-6
    corecore