5,925 research outputs found

    alpha-nucleus potentials for the neutron-deficient p nuclei

    Full text link
    alpha-nucleus potentials are one important ingredient for the understanding of the nucleosynthesis of heavy neutron-deficient p nuclei in the astrophysical gamma-process where these p nuclei are produced by a series of (gamma,n), (gamma,p), and (gamma,alpha) reactions. I present an improved alpha-nucleus potential at the astrophysically relevant sub-Coulomb energies which is derived from the analysis of alpha decay data and from a previously established systematic behavior of double-folding potentials.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.

    Evidence of different climatic adaptation strategies in humans and non-human primates

    Get PDF
    Abstract: To understand human evolution it is critical to clarify which adaptations enabled our colonisation of novel ecological niches. For any species climate is a fundamental source of environmental stress during range expansion. Mammalian climatic adaptations include changes in size and shape reflected in skeletal dimensions and humans fit general primate ecogeographic patterns. It remains unclear however, whether there are also comparable amounts of adaptation in humans, which has implications for understanding the relative importance of biological/behavioural mechanisms in human evolution. We compare cranial variation between prehistoric human populations from throughout Japan and ecologically comparable groups of macaques. We compare amounts of intraspecific variation and covariation between cranial shape and ecological variables. Given equal rates and sufficient time for adaptation for both groups, human conservation of non-human primate adaptation should result in comparable variation and patterns of covariation in both species. In fact, we find similar amounts of intraspecific variation in both species, but no covariation between shape and climate in humans, contrasting with strong covariation in macaques. The lack of covariation in humans may suggest a disconnect in climatic adaptation strategies from other primates. We suggest this is due to the importance of human behavioural adaptations, which act as a buffer from climatic stress and were likely key to our evolutionary success

    Four-particle condensate in strongly coupled fermion systems

    Full text link
    Four-particle correlations in fermion systems at finite temperatures are investigated with special attention to the formation of a condensate. Instead of the instability of the normal state with respect to the onset of pairing described by the Gorkov equation, a new equation is obtained which describes the onset of quartetting. Within a model calculation for symmetric nuclear matter, we find that below a critical density, the four-particle condensation (alpha-like quartetting) is favored over deuteron condensation (triplet pairing). This pairing-quartetting competition is expected to be a general feature of interacting fermion systems, such as the excition-biexciton system in excited semiconductors. Possible experimental consequences are pointed out.Comment: LaTeX, 11 pages, 2 figures, uses psfig.sty (included), to be published in Phys. Rev. Lett., tentatively scheduled for 13 April 1998 (Volume 80, Number 15

    Does Migration Make You Happy?:A Longitudinal Study of Internal Migration and Subjective Well-Being

    Get PDF
    The authors acknowledge financial support from the Economic and Social Research Council (ESRC) (RES-625-28-0001). This project is part of the ESRC Centre for Population Change (CPC). Financial support from the Marie Curie programme under the European Union's Seventh Framework Programme (FP/2007-2013) / Career Integration Grant n. PCIG10-GA-2011-303728 (CIG Grant NBHCHOICE, Neighbourhood choice, neighbourhood sorting, and neighbourhood effects).The majority of quantitative studies on the consequences of internal migration focus almost exclusively on the labour-market outcomes and the material well-being of migrants. We investigate whether individuals who migrate within the UK become happier after the move than they were before, and whether the effect is permanent or transient. Using life-satisfaction responses from twelve waves of the British Household Panel Survey and employing a fixed-effects model, we derive a temporal pattern of migrants’ subjective well-being around the time of the migration event. Our findings make an original contribution by revealing that, on average, migration is preceded by a period when individuals experience a significant decline in happiness for a variety of reasons, including changes in personal living arrangements. Migration itself causes a boost in happiness, and brings people back to their initial levels. The research contributes, therefore, to advancing an understanding of migration in relation to set-point theory. Perhaps surprisingly, long-distance migrants are at least as happy as short-distance migrants despite the higher social and psychological costs involved. The findings of this paper add to the pressure to retheorize migration within a conceptual framework that accounts for social well-being from a life-course perspective.PostprintPeer reviewe

    Quantum integrable multi atom matter-radiation models with and without rotating wave approximation

    Full text link
    New integrable multi-atom matter-radiation models with and without rotating wave approximation (RWA) are constructed and exactly solved through algebraic Bethe ansatz. The models with RWA are generated through ancestor model approach in an unified way. The rational case yields the standard type of matter-radiaton models, while the trigonometric case corresponds to their q-deformations. The models without RWA are obtained from the elliptic case at the Gaudin and high spin limit.Comment: 9 pages, no figure, talk presented in int. conf. NEEDS04 (Gallipoli, Italy, July 2004

    Angle resolved photoelectron spectroscopy of two-color XUV-NIR ionization with polarization control

    Get PDF
    Electron emission caused by extreme ultraviolet (XUV) radiation in the presence of a strong near infrared (NIR) field leads to multiphoton interactions that depend on several parameters. Here, a comprehensive study of the influence of the angle between the polarization directions of the NIR and XUV fields on the two-color angle-resolved photoelectron spectra of He and Ne is presented. The resulting photoelectron angular distribution strongly depends on the orientation of the NIR polarization plane with respect to that of the XUV field. The prevailing influence of the intense NIR field over the angular emission characteristics for He(1s) and Ne(2p) ionization lines is shown. The underlying processes are modeled in the frame of the strong field approximation (SFA) which shows very consistent agreement with the experiment reaffirming the power of the SFA for multicolor-multiphoton ionization in this regime

    Hybrid solar and coal-fired steam power plant with air preheating using a centrifugal solid particle receiver

    Get PDF
    Coal power stations have been hybridised with concentrated solar thermal (CST) fields which producefeedwater or with turbine bleed steam (TBS) heating from directlinear Fresnel to steam technology. This paper assesses solar hybridisation of boiler based steam power plants, whichpreheat boiler combustion air with a novel high temperature CST system based on a solid particle receiver (SPR). This new method of preheating has the potential to increase the solar share of the overall system, improve fuel saving and therefore produce a higher solar to electric conversion efficiency. These benefits result from theSPR solar systems higher operating temperature and integrated thermal storage. The integrated thermal storage also allows a buffered response time for handling transients in the intermittent solar resource. Analysis indicates that air-solarisation of coal plants can result in significantly higher solar to electric conversion efficiency than existing solar hybridisation options. Solarisation by TBS decreases power cycle efficiency due to bleed steam reduction, while solarisation by air-preheating increases the power system efficiency, primarily due to enhanced boiler efficiency brought about by reduced stack losses. The air solarisation option proposed in this paper has beencompared to current TBS with Fresnel based technology. The comparison was conducted by modelling both systems and analysing the thermodynamic heat and mass balance of the steam cycle and boiler using EBSILON®Professional software. Annual simulation tools, which calculate the performance of the solar field, receiver, storage (when applicable) and other system components, were used to model the output of the solar technologies. These tools, coupled with available economic data and cost models for the newly developed solar components, were used to calculate the levelized cost of energy of the compared hybridisation options. It was calculated that the levelized cost of the solar electricity produced by the SPR system was approximately 59%theelectricity produced by the Fresnel hybridisation

    Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors

    Full text link
    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, and Dodecane which are under discussion for next-generation experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.Comment: 9 pages, 3 figures, accepted for publication by Rev. Scient. Instr

    Comparison of Theory and Experiment for a One-Atom Laser in a Regime of Strong Coupling

    Get PDF
    Our recent paper reports the experimental realization of a one-atom laser in a regime of strong coupling (Ref. [1]). Here we provide the supporting theoretical analysis relevant to the operating regime of our experiment. By way of a simplified four-state model, we investigate the passage from the domain of conventional laser theory into the regime of strong coupling for a single intracavity atom pumped by coherent external fields. The four-state model is also employed to exhibit the vacuum-Rabi splitting and to calculate the optical spectrum. We next extend this model to incorporate the relevant Zeeman hyperfine states as well as a simple description of the pumping processes in the presence of polarization gradients and atomic motion. This extended model is employed to make quantitative comparisons with the measurements of Ref. [1] for the intracavity photon number versus pump strength and for the photon statistics as expressed by the intensity correlation function g2(tau).Comment: 19 pages, 14 figures. Added sections on: scaling properties, vacum-Rabi splitting, and optical spectru
    corecore