63 research outputs found

    Sociolinguistic Features for Author Gender Identification: From Qualitative Evidence to Quantitative Analysis

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Quantitative Linguistics on 7 October 2016, available online: http://www.tandfonline.com/10.1080/09296174.2016.1226430. The Accepted Manuscript is under embargo. Embargo end date: 7 April 2018.Theoretical and empirical studies prove the strong relationship between social factors and the individual linguistic attitudes. Different social categories, such as gender, age, education, profession and social status, are strongly related with the linguistic diversity of people’s everyday spoken and written interaction. In this paper, sociolinguistic studies addressed to gender differentiation are overviewed in order to identify how various linguistic characteristics differ between women and men. Thereafter, it is examined if and how these qualitative features can become quantitative metrics for the task of gender identification from texts on web blogs. The evaluation results showed that the “syntactic complexity”, the “tag questions”, the “period length”, the “adjectives” and the “vocabulary richness” characteristics seem to be significantly distinctive with respect to the author’s gender.Peer reviewedFinal Accepted Versio

    Quantifying the direct radiative effect of absorbing aerosols for numerical weather prediction: a case study

    Get PDF
    We conceptualize aerosol radiative transfer processes arising from the hypothetical coupling of a global aerosol transport model and a global numerical weather prediction model by applying the US Naval Research Laboratory Navy Aerosol Analysis and Prediction System (NAAPS) and the Navy Global Environmental Model (NAVGEM) meteorological and surface reflectance fields. A unique experimental design during the 2013 NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission allowed for collocated airborne sampling by the high spectral resolution Lidar (HSRL), the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI), up/down shortwave (SW) and infrared (IR) broadband radiometers, as well as NASA A-Train support from the Moderate Resolution Imaging Spectroradiometer (MODIS), to attempt direct aerosol forcing closure. The results demonstrate the sensitivity of modeled fields to aerosol radiative fluxes and heating rates, specifically in the SW, as induced in this event from transported smoke and regional urban aerosols. Limitations are identified with respect to aerosol attribution, vertical distribution, and the choice of optical and surface polarimetric properties, which are discussed within the context of their influence on numerical weather prediction output that is particularly important as the community propels forward towards inline aerosol modeling within global forecast systems.</p

    Increased insolation threshold for runaway greenhouse processes on Earth like planets

    Full text link
    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m2^2, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback on the long term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to defer the runaway greenhouse limit to higher insolation than inferred from 1D models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains cold and dry enough to hamper atmospheric water escape, even at large fluxes. This has strong implications for Venus early water history and extends the size of the habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013. Accepted version before journal editing and with Supplementary Informatio

    Why and how does shared language affect subsidiary knowledge inflows? A social identity perspective

    Get PDF
    We draw on social identity theory to conceptualize a moderated mediation model that examines the relationship between shared language among subsidiary and HQ managers, and subsidiaries’ knowledge inflows from HQ. Specifically, we study (1) whether this relationship is mediated by the extent to which subsidiary managers share HQ goals and vision, and the extent to which HR decisions are centralized; and (2) whether subsidiary type moderates these mediated relationships. Building on a sample of 817 subsidiaries in nine countries/regions, we find support for our model. Implications for research on HQ-subsidiary knowledge flows, social identity theory and international HRM are discussed

    Bioresorbable Plates and Screws for Clinical Applications: A Review

    Full text link
    • …
    corecore