432 research outputs found

    Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies

    Get PDF
    Lentiviral vectors (LVs) are potent gene transfer vehicles frequently applied in research and recently also in clinical trials. Retargeting LV entry to cell types of interest is a key issue to improve gene transfer safety and efficacy. Recently, we have developed a targeting method for LVs by incorporating engineered measles virus (MV) glycoproteins, the hemagglutinin (H), responsible for receptor recognition, and the fusion protein into their envelope. The H protein displays a single-chain antibody (scFv) specific for the target receptor and is ablated for recognition of the MV receptors CD46 and SLAM by point mutations in its ectodomain. A potential hindrance to systemic administration in humans is pre-existing MV-specific immunity due to vaccination or natural infection. We compared transduction of targeting vectors and non-targeting vectors pseudotyped with MV glycoproteins unmodified in their ectodomains (MV-LV) in presence of α-MV antibody-positive human plasma. At plasma dilution 1:160 MV-LV was almost completely neutralized, whereas targeting vectors showed relative transduction efficiencies from 60% to 90%. Furthermore, at plasma dilution 1:80 an at least 4-times higher multiplicity of infection (MOI) of MV-LV had to be applied to obtain similar transduction efficiencies as with targeting vectors. Also when the vectors were normalized to their p24 values, targeting vectors showed partial protection against α-MV antibodies in human plasma. Furthermore, the monoclonal neutralizing antibody K71 with a putative epitope close to the receptor binding sites of H, did not neutralize the targeting vectors, but did neutralize MV-LV. The observed escape from neutralization may be due to the point mutations in the H ectodomain that might have destroyed antibody binding sites. Furthermore, scFv mediated cell entry via the target receptor may proceed in presence of α-MV antibodies interfering with entry via the natural MV receptors. These results are promising for in vivo applications of targeting vectors in humans

    Fusoselect: cell-cell fusion activity engineered by directed evolution of a retroviral glycoprotein

    Get PDF
    Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here ‘Fusoselect', a universal procedure allowing the identification and engineering of molecular determinants for cell-cell fusion-activity by directed evolution. The system couples cell-cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a γ-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell-cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselec

    CD62L as target receptor for specific gene delivery into less differentiated human T lymphocytes

    Get PDF
    Chimeric antigen receptor (CAR)-expressing T cells are a complex and heterogeneous gene therapy product with variable phenotype compositions. A higher proportion of less differentiated CAR T cells is usually associated with improved antitumoral function and persistence. We describe in this study a novel receptor-targeted lentiviral vector (LV) named 62L-LV that preferentially transduces less differentiated T cells marked by the L-selectin receptor CD62L, with transduction rates of up to 70% of CD4+ and 50% of CD8+ primary T cells. Remarkably, higher amounts of less differentiated T cells are transduced and preserved upon long-term cultivation using 62L-LV compared to VSV-LV. Interestingly, shed CD62L neither altered the binding of 62L-LV particles to T cells nor impacted their transduction. The incubation of 2 days of activated T lymphocytes with 62L-LV or VSV-LV for only 24 hours was sufficient to generate CAR T cells that controlled tumor growth in a leukemia tumor mouse model. The data proved that potent CAR T cells can be generated by short-term ex vivo exposure of primary cells to LVs. As a first vector type that preferentially transduces less differentiated T lymphocytes, 62L-LV has the potential to circumvent cumbersome selections of T cell subtypes and offers substantial shortening of the CAR T cell manufacturing process

    Fusoselect: cell–cell fusion activity engineered by directed evolution of a retroviral glycoprotein

    Get PDF
    Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here ‘Fusoselect’, a universal procedure allowing the identification and engineering of molecular determinants for cell–cell fusion-activity by directed evolution. The system couples cell–cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a γ-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell–cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselect

    Receptor-targeted lentiviral vectors are exceptionally sensitive toward the biophysical properties of the displayed single-chain Fv

    Get PDF
    An increasing number of applications require the expression of single-chain variable fragments (scFv) fusion proteins in mammalian cells at the cell surface membrane. Here we assessed the CD30-specific scFv HRS3, which is used in immunotherapy, for its ability to retarget lentiviral vectors (LVs) to CD30 and to mediate selective gene transfer into CD30-positive cells. Fused to the C-terminus of the type-II transmembrane protein hemagglutinin (H) of measles virus and expressed in LV packaging cells, gene transfer mediated by the released LV particles was inefficient. A series of point mutations in the scFv framework regions addressing its biophysical properties, which substantially improved production and increased the melting temperature without impairing its kinetic binding behavior to CD30, also improved the performance of LV particles. Gene transfer into CD30-positive cells increased ∌100-fold due to improved transport of the H-scFv protein to the plasma membrane. Concomitantly, LV particle aggregation and syncytia formation in packaging cells were substantially reduced. The data suggest that syncytia formation can be triggered by trans-cellular dimerization of H-scFv proteins displayed on adjacent cells. Taken together, we show that the biophysical properties of the targeting ligand have a decisive role for the gene transfer efficiency of receptor-targeted LV

    Tumor-Specific Delivery of Immune Checkpoint Inhibitors by Engineered AAV Vectors

    Get PDF
    Immune checkpoint inhibitors (ICIs) can block distinct receptors on T cells or tumor cells thus preventing T cell inactivation and tumor immune escape. While the clinical response to treatment with ICIs in cancer patients is impressive, this therapy is often associated with a number of immune-related adverse events. There is therefore a need to explore innovative strategies of tumor-specific delivery of ICIs. Delivery of therapeutic proteins on a genetic level can be accomplished with viral vectors including those derived from adeno-associated virus (AAV). Here, we assessed the tumor-targeted Her2-AAV, a receptor-targeted AAV vector binding to the tumor antigen Her2/neu for cell entry, as vehicle for ICI gene delivery. Initially, we packaged the coding sequence of a scFv-Fc fusion protein directed against mouse programmed cell death protein-1 (PD-1) into Her2-AAV. Upon transduction of Her2/neu+ RENCA cells, AAV-encoded αPD-1 was readily detectable in the cell culture supernatant and revealed specific binding to its target antigen. In vivo, in BALB/c mice bearing subcutaneous RENCA-Her2/neu tumors, Her2-AAV mediated specific gene delivery into tumor tissue upon intravenous administration as verified by luciferase gene transfer and in vivo imaging thus demonstrating unimpaired tumor-targeting by Her2-AAV vectors in immunocompetent animals. When delivering the αPD-1 gene, levels of ICI were similar in tumor tissue for Her2-AAV and AAV2 but substantially reduced in liver for Her2-AAV. When combined with chemotherapy a tendency for reduced progression of tumor growth was documented for Her2-AAV treated mice. To get closer to the clinical situation, AAV constructs that deliver the complete coding sequence of the therapeutic antibody nivolumab which is directed against human PD-1 were generated next. The AAV-Nivolumab constructs were expressed and released from transduced MDA-MB-453 cells in vitro and from RENCA-Her2/neu cells upon intratumoral as well as intravenous administration in vivo. Antibody processing and expression levels were further improved through optimization of construct design. In conclusion, we provide proof-of-principle for redirecting the biodistribution of ICIs from liver and serum to tumor tissue by the use of engineered AAV vectors. This strategy can be easily combined with other types of immunotherapeutic concepts

    Selection of functional human antibodies from retroviral display libraries

    Get PDF
    Antibody library technology represents a powerful tool for the discovery and design of antibodies with high affinity and specificity for their targets. To extend the technique to the expression and selection of antibody libraries in an eukaryotic environment, we provide here a proof of concept that retroviruses can be engineered for the display and selection of variable single-chain fragment (scFv) libraries. A retroviral library displaying the repertoire obtained after a single round of selection of a human synthetic scFv phage display library on laminin was generated. For selection, antigen-bound virus was efficiently recovered by an overlay with cells permissive for infection. This approach allowed more than 10(3)-fold enrichment of antigen binders in a single selection cycle. After three selection cycles, several scFvs were recovered showing similar laminin-binding activities but improved expression levels in mammalian cells as compared with a laminin-specific scFv selected by the conventional phage display approach. Thus, translational problems that occur when phage-selected antibodies have to be transferred onto mammalian expression systems to exert their therapeutic potential can be avoided by the use of retroviral display libraries

    GluA4-Targeted AAV Vectors Deliver Genes Selectively to Interneurons while Relying on the AAV Receptor for Entry

    Get PDF
    Selective gene delivery into subtypes of interneurons remains an important challenge in vector development. Adeno-associated virus (AAV) vector particles are especially promising for intracerebral injections. For cell entry, AAV2 particles are supposed to attach to heparan-sulfate proteoglycans (HSPGs) followed by endocytosis via the AAV receptor (AAVR). Here, we assessed engineered AAV particles deficient in HSPG attachment but competent in recognizing the glutamate receptor 4 (GluA4, also known as GluRD or GRIA4) through a displayed GluA4-specific DARPin (designed ankyrin repeat protein). When injected into the mouse brain, histological evaluation revealed that in various regions, more than 90% of the transduced cells were interneurons, mainly of the parvalbumin-positive subtype. Although part of the selectivity was mediated by the DARPin, the chosen spleen focus-forming virus (SFFV) promoter had contributed as well. Further analysis revealed that the DARPin mediated selective attachment to GluA4-positive cells, whereas gene delivery required expression of AAVR. Our data suggest that cell selectivity of AAV particles can be modified rationally and efficiently through DARPins, but expression of the AAV entry receptor remains essential

    A Revised Framework for the Investigation of Expectation Update Versus Maintenance in the Context of Expectation Violations: The ViolEx 2.0 Model

    Get PDF
    Expectations are probabilistic beliefs about the future that shape and influence our perception, affect, cognition, and behavior in many contexts. This makes expectations a highly relevant concept across basic and applied psychological disciplines. When expectations are confirmed or violated, individuals can respond by either updating or maintaining their prior expectations in light of the new evidence. Moreover, proactive and reactive behavior can change the probability with which individuals encounter expectation confirmations or violations. The investigation of predictors and mechanisms underlying expectation update and maintenance has been approached from many research perspectives. However, in many instances there has been little exchange between different research fields. To further advance research on expectations and expectation violations, collaborative efforts across different disciplines in psychology, cognitive (neuro)science, and other life sciences are warranted. For fostering and facilitating such efforts, we introduce the ViolEx 2.0 model, a revised framework for interdisciplinary research on cognitive and behavioral mechanisms of expectation update and maintenance in the context of expectation violations. To support different goals and stages in interdisciplinary exchange, the ViolEx 2.0 model features three model levels with varying degrees of specificity in order to address questions about the research synopsis, central concepts, or functional processes and relationships, respectively. The framework can be applied to different research fields and has high potential for guiding collaborative research efforts in expectation research

    CD20 and CD19 targeted vectors induce minimal activation of resting B lymphocytes

    Get PDF
    B lymphocytes are an important cell population of the immune system. However, until recently it was not possible to transduce resting B lymphocytes with retro- or lentiviral vectors, making them unsusceptible for genetic manipulations by these vectors. Lately, we demonstrated that lentiviral vectors pseudotyped with modified measles virus (MV) glycoproteins hemagglutinin, responsible for receptor recognition, and fusion protein were able to overcome this transduction block. They use either the natural MV receptors, CD46 and signaling lymphocyte activation molecule (SLAM), for cell entry (MV-LV) or the vector particles were further modified to selectively enter via the CD20 molecule, which is exclusively expressed on B lymphocytes (CD20-LV). It has been shown previously that transduction by MV-LV does not induce B lymphocyte activation. However, if this is also true for CD20-LV is still unknown. Here, we generated a vector specific for another B lymphocyte marker, CD19, and compared its ability to transduce resting B lymphocytes with CD20-LV. The vector (CD19ds-LV) was able to stably transduce unstimulated B lymphocytes, albeit with a reduced efficiency of about 10% compared to CD20-LV, which transduced about 30% of the cells. Since CD20 as well as CD19 are closely linked to the B lymphocyte activation pathway, we investigated if engagement of CD20 or CD19 molecules by the vector particles induces activating stimuli in resting B lymphocytes. Although, activation of B lymphocytes often involves calcium influx, we did not detect elevated calcium levels. However, the activation marker CD71 was substantially up-regulated upon CD20-LV transduction and most importantly, B lymphocytes transduced with CD20-LV or CD19ds-LV entered the G1b phase of cell cycle, whereas untransduced or MV-LV transduced B lymphocytes remained in G0. Hence, CD20 and CD19 targeting vectors induce activating stimuli in resting B lymphocytes, which most likely renders them susceptible for lentiviral vector transduction
    • 

    corecore