25 research outputs found

    Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    Get PDF
    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin

    The frequency and clinicopathological significance of NRAS

    No full text
    BACKGROUND: Melanoma is a lethal skin malignancy with a high risk of metastasis, which prompts a need for research on treatment targets and prognostic factors. Recent studies show that the presence of neuroblastoma RAS viral oncogene homolog (NRAS) mutation can influence cell growth in melanomas. The NRAS mutation, which stimulates the mitogen‐activated protein kinase (MAPK) signaling pathway, is associated with a lower survival rate. However, evidence from Indonesia population is still very rare. Further understanding of the role of NRAS mutations in Indonesian melanoma cases will be crucial in developing new management strategies for melanoma patients with NRAS mutations. AIMS: To explore the frequency of NRAS mutations and their clinicopathological associations in patients with primary nodular cutaneous melanoma in Central Java and Yogyakarta, Indonesia. METHODS AND RESULTS: Fifty‐one paraffin‐embedded tissue samples were collected from primary nodular skin melanoma cases between 2011 and 2019 from the two largest referral hospitals in Yogyakarta and Central Java, Indonesia. The NRAS mutation status was evaluated using qualitative real‐time polymerase chain reaction (qRT‐PCR). The association of NRAS mutation was analyzed with the following: age, gender, location, lymph node metastasis, ulceration, mitotic index, tumor‐infiltrating lymphocytes (TILs), necrosis, tumor thickness, lymphovascular invasion (LVI), and tumor size. NRAS mutations were detected in 10 (19.6%) samples and predominantly observed (60%) in exon 2 (G12). These mutations were significantly correlated with lymph node metastases (p = .000); however, they were not associated with other variables analyzed in this study. CONCLUSIONS: The prevalence of NRAS mutations in primary nodular cutaneous melanoma cases from Indonesia is consistent with previous studies and is significantly associated with increased lymph node metastases. However, the predominant mutation detected in exon 2 (G12) is different from previous studies conducted in other countries. This suggests that melanoma cases in Javanese people have different characteristics from other ethnicities

    Correlation of BRAF and NRAS mutation status with outcome, site of distant metastasis and response to chemotherapy in metastatic melanoma

    No full text
    background: The prognostic significance of BRAF and NRAS mutations in metastatic melanoma patients remains uncertain, with several studies reporting conflicting results, often biased by the inclusion of patients treated with BRAF and MEK (MAPK) inhibitors. We therefore interrogated a historical cohort of patients free of the confounding influence of MAPK inhibitor therapy. methods: Patients with available archival tissue first diagnosed with metastatic melanoma between 2002 and 2006 were analysed. Mutational analysis was performed using the OncoCarta Panel. Patient characteristics, treatment outcome and survival were correlated with BRAF/NRAS mutation status. results: In 193 patients, 92 (48%) melanomas were BRAF-mutant, 39 (20%) were NRAS-mutant and 62 (32%) were wild-type for BRAF/NRAS mutations (wt). There was no difference in response to chemotherapy based on mutation status (35–37%). The distant disease-free interval (DDFI) was significantly shorter in patients with wt melanoma (27.9 months vs 35.1 for BRAF and 49.1 for NRAS) although this was not significant in multivariate analysis. Survival from stage IV melanoma diagnosis was not significantly different based on mutation status. The DDFI was significantly shorter in patients with BRAFV600K/R versus BRAFV600E melanoma in univariate and multivariate analyses. conclusions: BRAF and NRAS mutation status does not influence survival in metastatic melanoma.8 page(s

    Targeting non-human coronaviruses to human cancer cells using a bispecific single-chain antibody

    No full text
    To explore the potential of using non-human coronaviruses for cancer therapy, we first established their ability to kill human tumor cells. We found that the feline infectious peritonitis virus (FIPV) and a felinized murine hepatitis virus (fMHV), both normally incapable of infecting human cells, could rapidly and effectively kill human cancer cells artificially expressing the feline coronavirus receptor aminopeptidase N. Also 3-D multilayer tumor spheroids established from such cells were effectively eradicated. Next, we investigated whether FIPV and fMHV could be targeted to human cancer cells by constructing a bispecific single-chain antibody directed on the one hand against the feline coronavirus spike protein--responsible for receptor binding and subsequent cell entry through virus-cell membrane fusion--and on the other hand against the human epidermal growth factor receptor (EGFR). The targeting antibody mediated specific infection of EGFR-expressing human cancer cells by both coronaviruses. Furthermore, in the presence of the targeting antibody, infected cancer cells formed syncytia typical of productive coronavirus infection. By their potent cytotoxicity, the selective targeting of non-human coronaviruses to human cancer cells provides a rationale for further investigations into the use of these viruses as anticancer agents
    corecore