167 research outputs found

    Ensemble-Based Assimilation of Aerosol Observations in GEOS-5

    Get PDF
    MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008

    Chemoselective polymerizations from mixtures of epoxide, lactone, anhydride, and carbon dioxide

    Get PDF
    Controlling polymer composition starting from mixtures of monomers is an important, but rarely achieved, target. Here a single switchable catalyst for both ring-opening polymeri-zation (ROP) of lactones and ring-opening copolymerization (ROCOP) of epoxides, anhydrides and CO2 is investigated, using both experimental and theoretical methods. Different combinations of four model monomers: -caprolactone, cyclohexene oxide, phthalic anhydride and carbon dioxide are investigated using a single dizinc catalyst. The catalyst switches between the distinct polymerization cycles and shows high monomer selectivity resulting in block sequence control and predictable compositions (esters and car-bonates) in the polymer chain. The understanding gained of the orthogonal reactivity of monomers, specifically con-trolled by the nature of the metal-chain end group, opens the way to engineer polymer block sequences

    File Specification for the MERRA Aerosol Reanalysis (MERRAero): MODIS AOD Assimilation based on a MERRA Replay

    Get PDF
    This document describes the gridded output files produced by the Goddard Earth Observing System version 5 (GEOS-5) Goddard Aerosol Assimilation System (GAAS) from July 2002 through December 2014. The MERRA Aerosol Reanalysis (MERRAero) is produced with the hydrostatic version of the GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), ozone, carbon monoxide and carbon dioxide. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic emission sources. Meteorology is replayed from the MERRA Reanalysis

    Measurements of UV aerosol optical depth in the French Southern Alps

    Get PDF
    Routine measurements of global and diffuse UV irradiances at Briançon station (1310 m a.s.l.) are used to retrieve the direct solar irradiance and the aerosol optical depth (AOD), for cloudless days. Data of three years (2003, 2004, 2005) are analyzed; the results confirm those of a preliminary analysis for 2001, 2002. <br><br> The atmosphere is very clear in winter, with AODs between 0.05 and 0.1. The turbidity increases slowly in spring, starting end of February, with AODs around 0.2–0.3 in mid summer, some values reaching 0.4. A similar behaviour is observed for all years, with somewhat higher values in late summer for the year 2003

    New renewably-sourced polyesters from limonene-derived monomers

    Get PDF
    The functionalisation of limonene has enabled the synthesis of two renewably-sourced monomers for the formation of terpene-derived polyesters. Three methods for the synthesis of the novel hydroxy-acid 6 are reported and their green-credentials scrutinised through comparison of their sustainability-metrics. Step-growth homo-polymerisation of 6 is demonstrated to yield a low molecular weight (2.6 kDa) novel polyester with 100% of its carbon content originating from the terpene starting material. The corresponding diol 2 is shown to act as a co-monomer with a renewable diacid. The resultant polyesters display impressive Mns of up to 30 kDa with Tgs between −6 and 24 °C. These materials have been shown to depolymerise under basic conditions for reclamation of the diol monomer 2

    An Overview of the GEOS-5 Aerosol Reanalysis

    Get PDF
    GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) earth system model. GEOS-5 contains components for atmospheric circulation and composition (including data assimilation), ocean circulation and biogeochemistry, and land surface processes. In addition to traditional meteorological parameters, GEOS-5 includes modules representing the atmospheric composition, most notably aerosols and tropospheric/stratospheric chemical constituents, taking explicit account of the impact of these constituents on the radiative processes of the atmosphere. MERRA is a NASA meteorological reanalysis for the satellite era (1979-present) using GEOS-5. This project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales. As a first step towards an integrated Earth System Analysis (IESA), the GMAO is extending MERRA with reanalyses for other components of the earth system: land, ocean, bio-geochemistry and atmospheric constituents. In this talk we will present results from the MERRA-driven aerosol reanalysis covering the Aqua period (2003-present). The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS radiances into AERONET calibrated AOD. These measurements are further quality controlled using an adaptive buddy check scheme, and assimilated using the Local Displacement Ensemble (LDE) methodology. For this reanalysis, GEOS-5 runs at a nominal 50km horizontal resolution with 72 vertical layers (top at approx. 8Skm). GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals. We will present a summary of our efforts to validate such dataset. The GEOS-5 assimilated aerosol fields are first validated by comparison to independent in-situ measurements (AERONET and PM2.5 surface concentrations). In order to asses aerosol absorption on a global scale, we perform a detailed radiative transfer calculation to simulate the UV aerosol index, comparing our results to OMI measurements. By simulating aerosol attenuated backscatter, we use CALIPSO measurements to evaluate the vertical structure of our aerosol estimates, in particular in regions where we have larger discrepancies with OMI. Finally, the consistency of our AOD estimates with estimates from MISR, MODIS/Deep Blue, OMI and PARASOL will be briefly discussed

    Biomechanical Properties of Strictures in Crohn's Disease:Can Dynamic Contrast-Enhanced Ultrasonography and Magnetic Resonance Enterography Predict Stiffness?

    Get PDF
    Strictures and abdominal pain often complicate Crohn’s disease (CD). The primary aim was to explore whether parameters obtained by preoperative contrast-enhanced (CE) ultrasonography (US) and dynamic CE MR Enterography (DCE-MRE) of strictures associates with biomechanical properties. CD patients undergoing elective small intestinal surgery were preoperatively examined with DCE-MRE and CEUS. The excised intestine was distended utilizing a pressure bag. Luminal and outer bowel wall cross-sectional areas were measured with US. The circumferential stricture stiffness (Young’s modulus E) was computed. Stiffness was associated with the initial slope of enhancement on DCE-MRE (ρ = 0.63, p = 0.007), reflecting active disease, but lacked association with CEUS parameters. For structural imaging parameters, inflammation and stricture stiffness were associated with prestenotic dilatation on US (τ(b) = 0.43, p = 0.02) but not with MRE (τ(b) = 0.01, p = 1.0). Strictures identified by US were stiffer, 16.8 (14.0–20.1) kPa, than those graded as no or uncertain strictures, 12.6 (10.5–15.1) kPa, p = 0.02. MRE global score (activity) was associated with E (ρ = 0.55, p = 0.018). Elastography did not correlate with circumferential stiffness. We conclude that increasing activity defined by the initial slope of enhancement on DCE-MRE and MRE global score were associated with stricture stiffness. Prestenotic dilatation on US could be a potential biomarker of CD small intestinal stricture stiffness
    corecore