13,180 research outputs found
Serotonin Modulates Oscillations of the Membrane Potential in Isolated Spinal Neurons from Lampreys
Studies were performed on spinal neurons from lampreys isolated by an enzymatic/mechanical method using pronase. The effects of 100 µM serotonin (5-HT) on membrane potential oscillations induced by a variety of excitatory amino acids were studied. 5-HT was found to depolarize branched cells (presumptive motoneurons and interneurons) by 2–6 mV without inducing membrane potential oscillations. However, when oscillations were already present because of an excitatory amino acid, 5-HT changed the parameters of these oscillations, increasing the amplitudes of all types of oscillations, increasing the frequency of irregular oscillations, and increasing the duration of the depolarization plateaus accompanied by action potentials. Serotonin modulation of the effects of excitatory amino acids and the electrical activity of cells in the neural locomotor network facilitates motor activity and leads to increases in the contraction of truncal muscles and more intense movements by the animal. The possible mechanisms of receptor coactivation are discussed, along with increases in action potential frequency and changes in the parameters of the locomotor rhythm
The Effects of Serotonin on Functionally Diverse Isolated Lamprey Spinal Cord Neurons
The experiments reported here showed that application of serotonin (5-hydroxytryptamine, 5-HT) (100 µ M) did not induce any significant current through the membranes of any of the spinal neurons studied (n = 62). At the same time, the membranes of most motoneurons and interneurons (15 of 18) underwent slight depolarization (2–6 mV) in the presence of 5-HT, which was not accompanied by any change in the input resistance of the cells. Depolarization to 10–20 mV occurred in some cells (3 of 18) of these functional groups, this being accompanied by 20–60% decreases in input resistance. The same concentration of 5-HT induced transient low-amplitude depolarization of most sensory spinal neurons (dorsal sensory cells), this changing smoothly to long-term hyperpolarization by 2–7 mV. The input resistance of the cell membranes in these cases showed no significant change (n = 8). Data were obtained which provided a better understanding of the mechanism by which 5-HT modulates the activity of spinal neurons. Thus, 5-HT facilitates chemoreceptive currents induced by application of NMDA to motoneurons and interneurons, while the NMDA responses of dorsal sensory cells were decreased by 5-HT. 5-HT affected the post-spike afterresponses of neurons. 5-HT significantly decreased the amplitude of afterhyperpolarization arising at the end of the descending phase of action potentials in motoneurons and interneurons and increased the amplitude of afterdepolarization in these types of cells. In sensory spinal neurons, 5-HT had no great effect on post-spike afterresponses. The results obtained here support the suggestion that 5-HT significantly modulates the activity of spinal neurons of different functional types. 5-HT facilitates excitation induced by subthreshold depolarization in motoneurons and some interneurons, facilitating the generation of rhythmic discharges by decreasing afterhyperpolarization. In sensory cells, 5-HT enhances inhibition due to hyperpolarization, suppressing NMDA currents. The differences in the effects of 5-HT on functionally diverse neurons are presumed to be associated with the combination of different types of 5-HT receptors on the membranes of these types of spinal neurons
Hypersonic test facility Patent
Hypersonic test facility for studying ablation in models under high pressure and high temperatur
First do no harm: using 'ethical triage' to minimise causing harm when undertaking educational research among vulnerable participants
Although educational researchers will acknowledge that they have a moral imperative to avoid harming their participants whilst carrying out research, it does not necessarily mean that they can describe the nature of what this harm might be or how it can be recognised and so avoided. This is particularly important for those working with vulnerable participants, yet there is limited specificity within the educational literature as to what constitutes harm in such a setting. The article addresses this by de-constructing ethical dilemmas that arose during a research study that was carried out among adult students who had mental health problems, in England. The article outlines how these dilemmas were resolved safely due to preparation before the interviews; the ‘ethical triage’ employed in the interviews; and the reflexivity practised after the interviews. The article proposes that the issue of defining harm and how to recognise and avoid it, needs to be discussed more among educational researchers and those writing ethical guidelines, especially in relation to interviewing vulnerable participants. Not only will this help to better prepare researchers for when ethical dilemmas arise, but will also promote equity and access to participating in research, for those considered to be vulnerable
Recommended from our members
CloudBooks: An infrastructure for reading on multiple devices
The use of light, portable devices such as iPads whose reading angle is readily changed is radically different to reading on a desktop or laptop. However, it would be naive to view this as mere evolution. Rather, such devices permit reading activity to more closely mirror paper. A light, keyboardless device can be used in many different locations and orientations. This paper reports an infrastructure for supporting reading on multiple slate devices using a single cloud-based system to provide for numerous configurations
Instability of Myelin Tubes under Dehydration: deswelling of layered cylindrical structures
We report experimental observations of an undulational instability of myelin
figures. Motivated by this, we examine theoretically the deformation and
possible instability of concentric, cylindrical, multi-lamellar membrane
structures. Under conditions of osmotic stress (swelling or dehydration), we
find a stable, deformed state in which the layer deformation is given by \delta
R ~ r^{\sqrt{B_A/(hB)}}, where B_A is the area compression modulus, B is the
inter-layer compression modulus, and h is the repeat distance of layers. Also,
above a finite threshold of dehydration (or osmotic stress), we find that the
system becomes unstable to undulations, first with a characteristic wavelength
of order \sqrt{xi d_0}, where xi is the standard smectic penetration depth and
d_0 is the thickness of dehydrated region.Comment: 5 pages + 3 figures [revtex 4
Kinetic pathways of multi-phase surfactant systems
The relaxation following a temperature quench of two-phase (lamellar and
sponge phase) and three-phase (lamellar, sponge and micellar phase) samples,
has been studied in an SDS/octanol/brine system. In the three-phase case we
have observed samples that are initially mainly sponge phase with lamellar and
micellar phase on the top and bottom respectively. Upon decreasing temperature
most of the volume of the sponge phase is replaced by lamellar phase. During
the equilibriation we have observed three regimes of behaviour within the
sponge phase: (i) disruption in the sponge texture, then (ii) after the sponge
phase homogenises there is a lamellar nucleation regime and finally (iii) a
bizarre plume connects the lamellar phase with the micellar phase. The
relaxation of the two-phase sample proceeds instead in two stages. First
lamellar drops nucleate in the sponge phase forming a onion `gel' structure.
Over time the lamellar structure compacts while equilibriating into a two phase
lamellar/sponge phase sample. We offer possible explanatioins for some of these
observations in the context of a general theory for phase kinetics in systems
with one fast and one slow variable.Comment: 1 textfile, 20 figures (jpg), to appear in PR
Recommended from our members
Searching for the missing mantles of disrupted asteroids: Evidence from an olivine-rich clast in the Vaca Muerta Mesosiderite
- …