8,029 research outputs found
Impact of Endocrine Disruptions on Man: The likely Causes and Effects
It is now common knowledge that synthetic chemicals in the environment can find access into the body of humans and wildlife, thereby mimicking the action of endogenous hormones that regulate maintenance of normal growth, metabolism and reproduction. The chemicals able to do this are known as Endocrine Disrupting Chemicals (EDCs) which come from various sources ranging from household items to synthetic products and pharmaceuticals to plant derived estrogens. Although data linking cause and effect of the EDCs is extremely rare in humans owing to the fact that ethical issues would not allow for the use of humans as experimental models, yet a growing body of literature suggests a strong link between either pre- or postnatal exposure to environmental chemicals and observed adverse health outcomes. This review intends to bring together previous efforts to ascertain the impact of EDCs on human health, the missing research link and the possible precautionary strategies. This is important considering the magnitude of the adverse risks that exposure to endocrine disruptors might cause. Also, scientific uncertainty shall not delay precautionary action in reducing exposure to these chemicals as data available indicates transgenerational effects at population level due to chronic exposure to these chemicals.Keywords: endocrine disruptors, human health, chemicals, environmen
Transcriptional responses of Biomphalaria pfeifferi and Schistosoma mansoni following exposure to niclosamide, with evidence for a synergistic effect on snails following exposure to both stressors.
BackgroundSchistosomiasis is one of the world's most common NTDs. Successful control operations often target snail vectors with the molluscicide niclosamide. Little is known about how niclosamide affects snails, including for Biomphalaria pfeifferi, the most important vector for Schistosoma mansoni in Africa. We used Illumina technology to explore how field-derived B. pfeifferi, either uninfected or harboring cercariae-producing S. mansoni sporocysts, respond to a sublethal treatment of niclosamide. This study afforded the opportunity to determine if snails respond differently to biotic or abiotic stressors, and if they reserve unique responses for when presented with both stressors in combination. We also examined how sporocysts respond when their snail host is treated with niclosamide.Principal findingsCercariae-producing sporocysts within snails treated with niclosamide express ~68% of the genes in the S. mansoni genome, as compared to 66% expressed by intramolluscan stages of S. mansoni in snails not treated with niclosamide. Niclosamide does not disable sporocysts nor does it seem to provoke from them distinctive responses associated with detoxifying a xenobiotic. For uninfected B. pfeifferi, niclosamide treatment alone increases expression of several features not up-regulated in infected snails including particular cytochrome p450s and heat shock proteins, glutathione-S-transferases, antimicrobial factors like LBP/BPI and protease inhibitors, and also provokes strong down regulation of proteases. Exposure of infected snails to niclosamide resulted in numerous up-regulated responses associated with apoptosis along with down-regulated ribosomal and defense functions, indicative of a distinctive, compromised state not achieved with either stimulus alone.Conclusions/significanceThis study helps define the transcriptomic responses of an important and under-studied schistosome vector to S. mansoni sporocysts, to niclosamide, and to both in combination. It suggests the response of S. mansoni sporocysts to niclosamide is minimal and not reflective of a distinct repertoire of genes to handle xenobiotics while in the snail host. It also offers new insights for how niclosamide affects snails
Understanding the internet topology evolution dynamics
The internet structure is extremely complex. The Positive-Feedback Preference
(PFP) model is a recently introduced internet topology generator. The model
uses two generic algorithms to replicate the evolution dynamics observed on the
internet historic data. The phenomenological model was originally designed to
match only two topology properties of the internet, i.e. the rich-club
connectivity and the exact form of degree distribution. Whereas numerical
evaluation has shown that the PFP model accurately reproduces a large set of
other nontrivial characteristics as well. This paper aims to investigate why
and how this generative model captures so many diverse properties of the
internet. Based on comprehensive simulation results, the paper presents a
detailed analysis on the exact origin of each of the topology properties
produced by the model. This work reveals how network evolution mechanisms
control the obtained topology properties and it also provides insights on
correlations between various structural characteristics of complex networks.Comment: 15 figure
The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata.
BackgroundThe full scope of the genes expressed by schistosomes during intramolluscan development has yet to be characterized. Understanding the gene products deployed by larval schistosomes in their snail hosts will provide insights into their establishment, maintenance, asexual reproduction, ability to castrate their hosts, and their prolific production of human-infective cercariae. Using the Illumina platform, the intramolluscan transcriptome of Schistosoma mansoni was investigated in field-derived specimens of the prominent vector species Biomphalaria pfeifferi at 1 and 3 days post infection (d) and from snails shedding cercariae. These S. mansoni samples were derived from the same snails used in our complementary B. pfeifferi transcriptomic study. We supplemented this view with microarray analyses of S. mansoni from B. glabrata at 2d, 4d, 8d, 16d, and 32d to highlight robust features of S. mansoni transcription, even when a different technique and vector species was used.Principal findingsTranscripts representing at least 7,740 (66%) of known S. mansoni genes were expressed during intramolluscan development, with the greatest number expressed in snails shedding cercariae. Many transcripts were constitutively expressed throughout development featuring membrane transporters, and metabolic enzymes involved in protein and nucleic acid synthesis and cell division. Several proteases and protease inhibitors were expressed at all stages, including some proteases usually associated with cercariae. Transcripts associated with G-protein coupled receptors, germ cell perpetuation, and stress responses and defense were well represented. We noted transcripts homologous to planarian anti-bacterial factors, several neural development or neuropeptide transcripts including neuropeptide Y, and receptors that may be associated with schistosome germinal cell maintenance that could also impact host reproduction. In at least one snail the presence of larvae of another digenean species (an amphistome) was associated with repressed S. mansoni transcriptional activity.Conclusions/significanceThis in vivo study, emphasizing field-derived snails and schistosomes, but supplemented with observations from a lab model, provides a distinct view from previous studies of development of cultured intramolluscan stages from lab-maintained organisms. We found many highly represented transcripts with suspected or unknown functions, with connection to intramolluscan development yet to be elucidated
Systematic Topology Analysis and Generation Using Degree Correlations
We present a new, systematic approach for analyzing network topologies. We
first introduce the dK-series of probability distributions specifying all
degree correlations within d-sized subgraphs of a given graph G. Increasing
values of d capture progressively more properties of G at the cost of more
complex representation of the probability distribution. Using this series, we
can quantitatively measure the distance between two graphs and construct random
graphs that accurately reproduce virtually all metrics proposed in the
literature. The nature of the dK-series implies that it will also capture any
future metrics that may be proposed. Using our approach, we construct graphs
for d=0,1,2,3 and demonstrate that these graphs reproduce, with increasing
accuracy, important properties of measured and modeled Internet topologies. We
find that the d=2 case is sufficient for most practical purposes, while d=3
essentially reconstructs the Internet AS- and router-level topologies exactly.
We hope that a systematic method to analyze and synthesize topologies offers a
significant improvement to the set of tools available to network topology and
protocol researchers.Comment: Final versio
Siciak-Zahariuta extremal functions, analytic discs and polynomial hulls
We prove two disc formulas for the Siciak-Zahariuta extremal function of an
arbitrary open subset of complex affine space. We use these formulas to
characterize the polynomial hull of an arbitrary compact subset of complex
affine space in terms of analytic discs. Similar results in previous work of
ours required the subsets to be connected
Astronomy in the Cloud: Using MapReduce for Image Coaddition
In the coming decade, astronomical surveys of the sky will generate tens of
terabytes of images and detect hundreds of millions of sources every night. The
study of these sources will involve computation challenges such as anomaly
detection and classification, and moving object tracking. Since such studies
benefit from the highest quality data, methods such as image coaddition
(stacking) will be a critical preprocessing step prior to scientific
investigation. With a requirement that these images be analyzed on a nightly
basis to identify moving sources or transient objects, these data streams
present many computational challenges. Given the quantity of data involved, the
computational load of these problems can only be addressed by distributing the
workload over a large number of nodes. However, the high data throughput
demanded by these applications may present scalability challenges for certain
storage architectures. One scalable data-processing method that has emerged in
recent years is MapReduce, and in this paper we focus on its popular
open-source implementation called Hadoop. In the Hadoop framework, the data is
partitioned among storage attached directly to worker nodes, and the processing
workload is scheduled in parallel on the nodes that contain the required input
data. A further motivation for using Hadoop is that it allows us to exploit
cloud computing resources, e.g., Amazon's EC2. We report on our experience
implementing a scalable image-processing pipeline for the SDSS imaging database
using Hadoop. This multi-terabyte imaging dataset provides a good testbed for
algorithm development since its scope and structure approximate future surveys.
First, we describe MapReduce and how we adapted image coaddition to the
MapReduce framework. Then we describe a number of optimizations to our basic
approach and report experimental results comparing their performance.Comment: 31 pages, 11 figures, 2 table
A C3(H20) recycling pathway is a component of the intracellular complement system
An intracellular complement system (ICS) has recently been described in immune and nonimmune human cells. This system can be activated in a convertase-independent manner from intracellular stores of the complement component C3. The source of these stores has not been rigorously investigated. In the present study, Western blotting identified a band corresponding to C3 in freshly isolated human peripheral blood cells that was absent in corresponding cell lines. One difference between native cells and cell lines was the time absent from a fluid-phase complement source; therefore, we hypothesized that loading C3 from plasma was a route of establishing intracellular C3 stores. We found that many types of human cells specifically internalized C3(H(2)O), the hydrolytic product of C3, and not native C3, from the extracellular milieu. Uptake was rapid, saturable, and sensitive to competition with unlabeled C3(H(2)O), indicating a specific mechanism of loading. Under steady-state conditions, approximately 80% of incorporated C3(H(2)O) was returned to the extracellular space. These studies identify an ICS recycling pathway for C3(H(2)O). The loaded C3(H(2)O) represents a source of C3a, and its uptake altered the cytokine profile of activated CD4(+) T cells. Importantly, these results indicate that the impact of soluble plasma factors should be considered when performing in vitro studies assessing cellular immune function
Keratin 6a marks mammary bipotential progenitor cells that can give rise to a unique tumor model resembling human normal-like breast cancer.
Progenitor cells are considered an important cell of origin of human malignancies. However, there has not been any single gene that can define mammary bipotential progenitor cells, and as such it has not been possible to use genetic methods to introduce oncogenic alterations into these cells in vivo to study tumorigenesis from them. Keratin 6a is expressed in a subset of mammary luminal epithelial cells and body cells of terminal end buds. By generating transgenic mice using the Keratin 6a (K6a) gene promoter to express tumor virus A (tva), which encodes the receptor for avian leukosis virus subgroup A (ALV/A), we provide direct evidence that K6a(+) cells are bipotential progenitor cells, and the first demonstration of a non-basal location for some biopotential progenitor cells. These K6a(+) cells were readily induced to form mammary tumors by intraductal injection of RCAS (an ALV/A-derived vector) carrying the gene encoding the polyoma middle T antigen. Tumors in this K6a-tva line were papillary and resembled the normal breast-like subtype of human breast cancer. This is the first model of this subtype of human tumors and thus may be useful for preclinical testing of targeted therapy for patients with normal-like breast cancer. These observations also provide direct in vivo evidence for the hypothesis that the cell of origin affects mammary tumor phenotypes
- …