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The internet structure is extremely complex. The positive-feedback preference �PFP� model is a recently
introduced internet topology generator. The model uses two generic algorithms to replicate the evolution
dynamics observed on the internet historic data. The phenomenological model was originally designed to
match only two topology properties of the internet, i.e., the rich-club connectivity and the exact form of degree
distribution, whereas numerical evaluation has shown that the PFP model accurately reproduces a large set of
other nontrivial characteristics as well. This paper aims to investigate why and how this generative model
captures so many diverse properties of the internet. Based on comprehensive simulation results, the paper
presents a detailed analysis on the exact origin of each of the topology properties produced by the model. This
work reveals how network evolution mechanisms control the obtained topology properties and it also provides
insights on correlations between various structural characteristics of complex networks.
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I. INTRODUCTION

It is vital to obtain a good description of a network topol-
ogy because structure fundamentally affects function �1,2�.
The internet contains millions of routers, which are grouped
into thousands of subnetworks, called autonomous systems
�ASs�, which are then glued into a global network by the
Border Gateway Protocol. Effective engineering of the inter-
net is predicated on a detailed understanding of issues such
as the large-scale structure of its underlying physical topol-
ogy, the manner in which it evolves over time, and the way
in which its constituent components contribute to its overall
function �3�.

The recently introduced positive-feedback preference
�PFP� model �4� is an internet AS-level topology generator.
The model uses two evolution mechanisms, namely the in-
teractive growth and the positive-feedback preference. Both
mechanisms are inspired by, and coincident with, practical
observations on the internet historic data. Originally the phe-
nomenological model was designed to match only the inter-
net’s rich-club connectivity �5� and the exact form of degree
distribution, including the distribution of low degrees, the
maximum degree, and the degree distribution’s power-law
exponent �6�. It has been a pleasant surprise that numerical
evaluation against the internet measurement date has shown
that the model accurately reproduces a large set of other
nontrivial topology characteristics as well, including the dis-
assortative mixing �7–9�, the shortest path length �10�, short
cycles �11,12�, and the betweenness centrality �13�. The PFP
model has been used in more realistic simulations of the
internet, e.g. Ref. �14�.

As of this writing, an analytical solution of the PFP model
is not available yet. In this paper we use the numerical
method to analyze why and how the model is able to repro-
duce a fuller picture of the internet than it was designed for.
In other words, we aim to investigate the exact origin of each
of the topology properties captured by the PFP model. An-

swers to these questions can be valuable for the ongoing
effort on a mathematical solution of the model.

In Sec. II, we review the PFP model and its two mecha-
nisms. We reflect on the intuitions underlying the design of
the two evolution mechanisms. In Sec. III, we comparatively
examine two limiting cases of the PFP model. Based on de-
tailed numerical simulations, we identify the explicit evolu-
tion dynamics that are responsible for generating the rich-
club phenomenon and the degree distribution properties. We
also reveal that the origin of the disassortative mixing is in
fact already embedded in the model’s two evolution mecha-
nisms. Furthermore, we explain that the PFP model re-
sembles the internet’s shortest path length and short cycles
because these two characteristics are correlated with other
topology properties.

In Sec. IV, the above results become more evident when
we examine how the PFP model’s topology properties react
to the change of the parameters that control the model’s evo-
lution mechanisms. Our investigation leads to a number of
insightful discoveries. For example, we find out that the rich-
club connectivity is almost exclusively determined by the
interactive growth mechanism. We also show that the inter-
active growth and the positive-feedback preference jointly
contribute to the model’s disassortative mixing behavior,
however, the two mechanisms have opposite effects on the
degree distribution’s power-law exponent.

In Sec. V we conclude that this work represents a fuller
and deeper understanding of the internet topology evolution
dynamics. This work complements the research on evolution
mechanisms and structural constraints of complex networks
in general.

II. POSITIVE-FEEDBACK PREFERENCE MODEL

In graph theory, degree k is defined as the number of links
a node has. Degree is a local property but the distribution of
degree provides a global view of a network structure. The
degree distribution of the internet AS-level topology is char-
acterized by a power law �6� as*E-mail address: s.zhou@adastral.ucl.ac.uk
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P�k� � k�, � � − 2.2. �1�

A power-law degree distribution means the majority of nodes
that form a network have very few links. Some nodes, how-
ever, are very well connected.

Barabási and Albert �BA� �15� showed that a power-law
degree distribution can arise from two generic mechanisms:
growth, where a network “grows” from a small random net-
work by attaching new nodes to m old nodes in the existing
system �see Fig. 1�a�, in which m=3�; and preferential at-
tachment, where a new node is attached preferentially to
nodes that are already well connected. The probability that a
new node will be connected to a node with degree k is given
as

��k� =
k

� j
kj

. �2�

During the last few years a large number of models have
been proposed to resemble and explain the power-law degree
distribution and other topology properties observed on vari-
ous real networks �1,2�. Recently Zhou and Mondragón �4�
introduced the positive-feedback preference �PFP� model.
Numerical evaluation has shown that the PFP model accu-
rately reproduces a large number of characteristics of the
internet AS-level topology. The model uses the following
two evolution mechanisms.

A. Mechanism one: Interactive growth

The interactive growth is designed to satisfy a number of
observations on internet history data �16–18�. First, the in-
ternet evolution is largely due to two processes: the attach-
ment of new nodes to the existing system, and the addition of
new internal links between old nodes already present in the
existing system. Second, the majority of new nodes appear-
ing on the internet are each attached to no more than two old
nodes. And third, the ratio of links to nodes on the internet
AS graph is approximately 3.

Different from the independent growth �19� �see Fig.
1�b��, in which new nodes and new internal links are added
independently, the two evolution processes are interdepen-
dent in the interactive growth �see Figs. 1�c� and 1�d��. That
is to say, a new internal link always starts from an old node,
we call it a host node, to which a new node is attached. A
heuristic explanation of this interaction is that on the inter-
net, new customers �new nodes� generate extra demand for
service, which triggers their service providers �host nodes� to
develop new connections to other service providers �new in-
ternal links� in order to accommodate the increased traffic
and improve services.

The interactive growth is described as follows: starting
from a small random graph, at each time step,

�i� with probability p� �0,1�, a new node is attached
to a host node, and at the same time two new internal links
are added connecting the host node to two other old nodes
�see Fig. 1�c��;

�ii� with probability 1− p, a new node is attached to
two host nodes, and only one new internal link is added
connecting one of the host nodes to another old node �see
Fig. 1�d��.
Numerical simulation shows that when the probability pa-
rameter p=0.4, the interactive growth produces the best re-
sult.

B. Mechanism two: positive-feedback preference

The PFP model uses the following nonlinear preference
probability to choose old nodes for the interactive growth:

��k� =
k1+� ln k

� j
kj

1+� ln kj
, � � 0. �3�

It is called the positive-feedback preference �PFP� because a
node’s ability to acquire new links increases as a feedback
loop of the node’s degree. When the parameter �=0, it is
equivalent to the BA model’s linear preference �see Eq. �2��.
Numerical simulation shows that the positive-feedback pref-
erence produces the best result when the parameter �
=0.021 �26�.

C. Discussion

The positive-feedback preference is designed to satisfy
the observation �16–18� that during the internet evolution,
the probability that a new node links with a low-degree node
follows the BA model’s linear preference, whereas high-
degree nodes have a stronger ability to acquire new links
than predicted by the linear preference.

A preference probability can be written as ��k�
= f�k� /� j f�kj�, where f�k� is a degree function. The exponen-
tial preference �20,21�, which uses the nonlinear degree func-
tion of f�k�=k�, ��1, also gives high-degree nodes a stron-
ger preference than the linear preference. However, as shown
in Fig. 2, only the PFP can be approximated by the linear
preference for low-degree nodes. When degree increases, the
PFP grows more and more rapidly and finally exceeds the
exponential preference.

FIG. 1. Network growth mechanisms: �a� the BA model’s new-
node-only growth; �b� the independent growth; and �c� and �d� the
PFP model’s interactive growth.
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To illustrate the impact of such difference, we compare a
k-degree node against a �k-degree node, ��1. The ratio of
their preference probability can be given as ���k� /��k�
= f��k� / f�k�. As shown in Table I, for the linear and the
exponential preferences, a 1000-degree node, when compet-
ing against a 100-degree node, has the same advantage as a
10-degree node competing against a 1-degree node. Whereas
for the PFP, f�1000� / f�100� is more than 50% larger than
f�10� / f�1�. This means the PFP not only appreciates the de-
gree gap between low-degree nodes and high-degree nodes,
but also effectively enlarges the degree difference between
high-degree nodes themselves �see Fig. 3�. The consequence
of the positive-feedback preference is “the rich not only get
richer, they get disproportionately richer.”

III. EVOLUTION MECHANISMS VS TOPOLOGY
PROPERTIES

To investigate the relations between the PFP model’s evo-
lution mechanisms and the obtained topology properties, we
compare the PFP model and the BA model against the fol-
lowing two limiting cases:

�i� The interactive growth �IG� model, which uses the
PFP model’s interactive growth and the BA model’s linear
preference.

�ii� The BA	PFP model, which uses the BA model’s
new-node-only growth and the PFP model’s positive-
feedback preference.
For each of the four models, we generate ten networks to the
same size as the internet AS graph �22,23� using different
random seeds. All networks are generated from small ran-

dom graphs consisting of ten nodes randomly connected by
30 links. Quantities in Table II are averages over the ten
networks. Detailed evaluation of the PFP model against in-
ternet measurement data has been provided in Ref. �4�. In the
following we focus on the comparison of topology properties
among the four models.

A. Rich-club phenomenon

A hierarchical structure of the internet AS-level topology
is the rich-club phenomenon �5�, which describes the fact
that well connected nodes, rich nodes, tend to be tightly
interconnected with other rich nodes forming a core group,
or club. Rich-club membership can be defined as “the r best
connected nodes,” where r is a node’s rank denoting the
node’s position on the nonincreasing degree list of a net-
work. Node rank is often normalized by N, the number of
nodes contained in the network.

The rich-club phenomenon is assessed by measuring the
rich-club connectivity 
�r /N�, defined as the ratio of the ac-
tual number of links to the maximum possible number of
links among the rich-club members. The internet AS graph is
fundamentally characterized by a power law of ��r /N��r�

with the exponent �=−1.48, which results from fitting
��r /N� with a power law for 90% of the nodes, i.e., 0.1

r /N
1. Rich-club connectivity indicates how well club
members “know” each other, e.g., 
=1 means that all the
members have a direct link to any other member, i.e., they
form a fully connected mesh, a clique. The top clique size
nclique is defined as the maximum number of nodes with the
highest ranks still forming a clique.

As shown in Fig. 4 and Table II, the PFP model and the
IG model exhibit the same rich-club connectivity. So do the
BA model and the BA	PFP model. However, the former
two models, using the interactive growth, produce a signifi-
cantly stronger rich-club phenomenon than that obtained by
the latter two models using the new-node-only growth. It is
evident that the rich-club phenomenon is primarily deter-
mined by the growth mechanisms, not the preference
schemes.

The BA model and the BA	PFP model use the new-
node-only growth mechanism, in which all newly added

FIG. 3. Preference probability ratio f��k� / f�k� as a function of
degree k when �=10, �=1.15, and �=0.021.

FIG. 2. Three degree functions: f�k�=k for the linear preference,
f�k�=k1.15 for the exponential preference, and f�k�=k1+0.021 ln k for
the positive-feedback preference.

TABLE I. Preference probability ratio f��k� / f�k� when �
=1.15 and �=0.021.

Linear Exponential Positive feedback

f�k� k k� k1+� ln k

f��k�

f�k�
� �� �1+� ln��k�k� ln �

f�1000�

f�100�

1000
100 =10 2818.4

199.5 =14.1 2722.7
156.1 =17.4

f�10�

f�1�

10
1 =10 14.1

1 =14.1 11.2
1 =11.2
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links are external links between new nodes and old nodes.
The old nodes are preferentially chosen from rich nodes but
the new nodes have only three initial links. Thus the only
chance for the rich-club connectivity to increase is when new
nodes become rich nodes, however, this usually happens in
the early stage of network growth, and later on new nodes
become more and more difficult to compete for new links
against the already rich nodes. As a result, although rich
nodes keep acquiring new links, the interconnections among
rich nodes hardly increases.

In contrast the PFP model and the IG model use the in-
teractive growth mechanism, which adds not only external
links, but also internal links between old nodes. Since the old
nodes are preferentially chosen from already rich nodes, the
newly added internal links directly increase the rich-club
connectivity. The ratio of internal links to external links can
be estimated as a function of the parameter p,

Lint

Lext
=

2p + �1 − p�
p + 2�1 − p�

=
1 + p

2 − p
. �4�

Simulation results show that when p=0.4, i.e., Lint /Lext
=7/8, the interactive growth produces a rich-club phenom-
enon that precisely matches that of the internet AS graph.

The reason that using different preference schemes has
little impact on the obtained rich-club phenomenon is that,
although preference schemes influence the degree growth
rate �i.e., how many links rich nodes have�, they have little
effect on the interconnectivity among the rich nodes.

B. Degree distribution properties

1. Distribution of low degrees

Table II and Fig. 5 show that more than half of the nodes

TABLE II. Properties of the four models and the internet AS graph.

BA IG BA	PFP PFP AS graph

Growth mechanism New-node-only IGp=0.4 New-node-only IGp=0.4

Preference scheme Linear Linear PFP�=0.021 PFP�=0.021

Number of nodes N 9204 9204 9204 9204 9204

Number of links L 27612 27612 27612 27612 28959

Rich-club phenomenon weak strong weak strong strong

Rich-club exponent, � −0.97 −1.49 −0.97 −1.49 −1.481

Rich-club connectivity 
�0.01� 6.0% 40.3% 5.7% 44.8% 44.3%

Top clique size nclique 2 15 4 16 16

Degree distribution P�1� 0% 25.8% 0% 26.2% 26.5%

Degree distribution P�2� 0% 33.7% 0% 33.7% 30.2%

Degree distributionP�3� 39.8% 10.5% 43.7% 10.5% 14.8%

Degree distribution exponent � −2.902 −2.206 −2.890 −2.255 −2.254

Maximum degree kmax 240 677 898 1950 2070

Disassortative mixing neutral weak weak strong strong

Assortativity coefficient � −0.036 −0.124 −0.091 −0.234 −0.236

Characteristic path length �* 4.25 3.55 3.75 3.07 3.12

FIG. 4. Rich-club connectivity vs normalized rank, 
�r /N�. FIG. 5. Degree distribution P�k�.
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on the internet AS graph are one-degree or two-degree nodes,
and the distribution of low degrees does not follow a power
law because P�k=1�=26.5% � P�k=2�=30.2%. The BA
model and the BA	PFP model do not contain one-degree
and two-degree nodes because they use the new-node-only
growth, in which each new node is attached to three old
nodes, i.e., k�3. The IG model and the PFP model use the
interactive growth mechanism, which assigns a new node’s
initial degree as one or two according to the probability pa-
rameter p. Simulation results show that when p=0.4 the in-
teractive growth closely resembles the AS graph’s distribu-
tion of low degrees as well.

2. Maximum degree and degree growth rate

As shown in Fig. 5, the AS graph’s degree distribution
does not follow a strict power law because it has a heavy tail.
The maximum degree kmax is the largest degree in a network.
The maximum degree is an indicator of how far the degree
distribution deviates from the prediction of a strict power
law. Table II shows that the internet AS graph features a very
large maximum degree, which is one order of magnitude
larger than that generated by the BA model.

Figure 6 illustrates the growth of average degree of nodes
contained in the initial small random graphs from which the
networks grow. These nodes are the earliest ones present in
the networks and usually they represent a sample of the rich
nodes in the generated networks. As expected, the nodes in
the BA	PFP model enjoy a higher degree growth rate than
the BA model because the positive-feedback preference
gives stronger preference to high-degree nodes than the BA
model’s linear preference.

Figure 6 also shows that the degree growth rate of the IG
model is higher than the BA model and the BA	PFP model.
This means the interactive growth is also able to accelerate
the link acquiring process. As shown in Fig. 1, the new-node-
only growth and the independent growth only allow a chosen
old node to acquire one new link per time step, whereas the
interactive growth is fundamentally different. It enables a
chosen old node, i.e., a host node, to acquire up to three new
links at each time step: with probability p, a host node ac-
quires one external link and two internal links; and with
probability 1− p, a host node acquires one external link and

one internal link. We call this the degree-leap effect of the
interactive growth. The degree-leap effect increases the de-
gree of host nodes by 2 or 3, which would take many time
steps to achieve when using other growth mechanisms. The
degree-leap effect also significantly enhances the node’s abil-
ity to compete for even more new links in the forthcoming
time steps, therefore the node’s degree growth rate is accel-
erated.

The PFP model uses both the interactive growth and the
positive-feedback preference, which reinforce each other, to
achieve a degree growth rate that is notably more rapid than
any other model. As a result, the PFP model obtains a very
large maximum degree, as large as that of the internet AS
graph.

3. Power-law exponent of degree distribution

As shown in Fig. 5, all four models produce power-law
degree distributions, but have different power-law exponents,
which result from fitting P�k� in the area of 2
k
100.
Table II shows that the power-law exponents produced by the
IG model and the PFP model, both using the interactive
growth, are close to that of the internet AS graph, �=
−2.254, whereas the exponent generated by the BA model
and the BA	PFP model is close to �=−3.0 �1�.

It is clear that the interactive growth has a major impact
on the obtained degree distribution exponent. This is because
the interactive growth has the degree-leap effect, which al-
lows more nodes to be “fast tracked” into rich nodes and also
makes the already rich nodes get richer more rapidly. The
consequences of this dynamics is that the obtained power-
law degree distribution exhibits a flatter slope �with a larger
value of �� and a heavier tail �with a larger maximum de-
gree�.

Studying the degree distribution exponents shown in
Table II, we can see that the exponent of the IG model, �=
−2.206, is actually overly increased by the interactive growth
and slightly larger than that of the internet AS graph. The
PFP model accurately matches the AS graph’s exponent be-
cause its positive-feedback preference has a minor effect of
reducing the value of �. This is because, comparing with the
linear preference, the PFP gives a strong favor to the richest

FIG. 7. Nearest-neighbors average degree vs node degree.
FIG. 6. Average degree growth of the initial nodes.
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nodes �at the tail of the degree distribution� at the cost of all
other nodes. As a result, the degree distribution is slightly
steeper �with a smaller value of ��, the power law cuts off at
a smaller degree, and the tail gets even longer.

C. Disassortative mixing

Networks exhibit different degree-degree mixing patterns
�7–9�. For example, social networks are usually classified as
assortative networks, because nodes in social networks sta-
tistically tend to attach to alike nodes, i.e., high-degree nodes
to high-degree nodes and low-degree nodes to low-degree
nodes. In contrast, technological and biological networks,
e.g., the internet, exhibit the disassortative mixing, where
high-degree nodes tend to connect with low-degree nodes,
and vice versa. The BA model, however, is a neutral network
that exhibits no mixing tendency.

The rich-club phenomenon observed on the internet does
not conflict with the fact that the internet is a disassortative
network, because the rich-club phenomenon does not imply
that the majority links of the rich nodes are directed to other
rich-club members. Indeed, rich nodes have very large num-
bers of links and only a few of them are enough to provide

the interconnectivity to other club members, whose number
is anyway small �2�.

A network’s mixing pattern is decided by the conditional
probability pc�k� �k� that a link connects a k-degree node to a
k�-degree node. For computational simplicity, a network’s
mixing pattern is often identified by the correlation between
node degree and nearest-neighbors average degree �16�. As
shown in Fig. 7, the PFP model is a disassortative network
because it exhibits a negative degree-degree correlation, and
the BA model is a neutral network because the nearest-
neighbors average degree is almost invariant to the node de-
gree.

Another way to determine a network’s mixing pattern is a
metric called the assortativity coefficient �7�, �� �−1,1�,
which is defined as

� =

L−1�i
jiki − 	L−1�i

1

2
�ji + ki�
2

L−1�i

1

2
�ji

2 + ki
2� − 	L−1�i

1

2
�ji + ki�
2 , �5�

where L is the number of links, and ji, ki are the degrees of
the nodes at the ends of the ith link, with i=1,2 , . . . ,L.
When ��0, a network is an assortative network, and when
��0, it is a disassortative network. As shown in Table II, the
internet AS graph, characterized by a negative assortativity
coefficient of �=−0.236, is closely resembled by the PFP
model. The assortativity coefficient of the BA model is close
to zero. In between are that of the IG model and the BA
	PFP model.

This result shows that both the positive-feedback prefer-
ence and the interactive growth contribute to a network’s
disassortative mixing behavior. As we have discussed in Sec.
II C, the positive-feedback preference can effectively am-
plify the degree difference between two nodes. Thus any
degree difference between a link’s two end nodes will be
magnified by the PFP because the end node with a larger
degree will grow faster and faster than the other end node. As
a result the PFP increases a network’s disassortative mixing.
The interactive growth also increases the disassortative mix-
ing but in a different way. When external links are attached

FIG. 8. Complimentary cumulative distribution �CCD� of
shortest-path length P��� �.

FIG. 9. Complement cumulative distribution of node triangle
coefficient P��kt�.

FIG. 10. Average triangle coefficient of k-degree nodes kt�k�.
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between new nodes and host nodes, the host nodes are pref-
erentially chosen from already rich nodes, and they enjoy the
extra degree growth given by the interactive growth’s
degree-leap effect. However, the new nodes are to remain as
low-degree, poor nodes. Thus the interactive growth intro-
duces external links with a larger degree gap between the end
nodes than other growth mechanisms do.

As shown in the IG model and the BA	PFP model, when
either the interactive growth or the positive-feedback prefer-
ence works alone, their effect on strengthening the disassor-
tative mixing is limited. When the two mechanisms work
together, as shown in the PFP model, they reinforce each
other and generate networks as disassortative as the internet
AS graph.

Up to this point, we have identified the explicit evolution
dynamics that are responsible for the above topology prop-
erties. We can see the origin of these topology properties are
embedded in the PFP model’s two evolution mechanisms.

D. Shortest path length

The internet is a small-world network �10� because it is
possible to get to any node via only a few links among ad-
joining nodes. The shortest path length � is the minimum hop
distance between a pair of nodes. Performance of modern
network routing algorithms depends strongly on the distribu-
tion of shortest path length �24�. The characteristic path
length �* is the average shortest path length over all pairs of
nodes.

The characteristic path length of the internet AS graph is
only 3.12 hops. The internet is so small because it exhibits
both a strong rich-club phenomenon and a strong disassorta-
tive mixing. These two structural properties together contrib-
ute to the routing efficiency of the network. The rich club
consists of a small number of highly connected nodes. The
club members are tightly interconnected between each other.
If two club members do not have a direct connection, they
are very likely to share a neighboring club member. Thus the
average hop distance between the members is very small

�between 1 and 2 hops�. The rich club functions as a “super”
traffic hub of a network by providing a large selection of
shortcuts for routing. The disassortative mixing property en-
sures that the majority of network nodes, peripheral low-
degree nodes, are always near the rich club. Thus a typical
shortest path between two peripheral nodes consists of three
hops, the first hop is from the source node to a member of
the rich club, the second hop is between two club members,
and the final hop is to the destination node.

As shown in Fig. 8 and Table II, the PFP model accurately
reproduces the rich-club phenomenon and the disassortative
mixing of the internet AS graph; naturally it reproduces the
internet’s shortest path length as well. The BA model exhib-
its a weak rich-club phenomenon and it is a neutral network.
As a result the BA model’s characteristic path length is more
than one hop longer than that of the internet AS graph. This
one-hop difference is significant considering that the AS
graph’s characteristic path length is merely over three hops.
The BA	PFP model exhibit a rich-club phenomenon as

TABLE III. The PFP model’s sensitivity to parameter p when �=0.

Interactive growth parameter p 0.0 0.2 0.4 0.6 0.8 AS graph

Lint /Lext= �1+ p� / �2− p� 1/2 2/3 7/8 8/7 3/2

Rich-club exponent � −1.36 −1.43 −1.49 −1.56 −1.61 −1.481

Rich-club connectivity 
�0.01� 26.1% 33.3% 40.3% 48.2% 53.8% 44.3%

Top clique size nclique 7 10 15 17 20 16

Degree distribution P�1� 0% 13.1% 25.8% 38.9% 50.5% 26.5%

Degree distribution P�2� 49.5% 41.6% 33.7% 25.9% 18.7% 30.2%

Degree distribution P�3� 13.5% 12.1% 10.5% 8.4% 6.6% 14.8%

Degree distribution exponent � −2.416 −2.229 −2.206 −2.151 −2.055 −2.254

Maximum degree kmax 573 625 677 722 763 2070

Assortativity coefficient, � −0.075 −0.095 −0.124 −0.150 −0.183 −0.236

Characteristic path length �* 3.65 3.60 3.55 3.52 3.48 3.12

FIG. 11. Properties of the PFP model when parameter p grows
from 0 to 0.8 while �=0, including the degree distribution exponent
�, the rich-club connectivity exponent �, and the assortativity coef-
ficient �.
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weak as the BA model, but it exhibits a �weak� disassortative
mixing. Consequently its characteristic path length is a half
hop shorter than that of the BA model. The IG model is more
disassortative than the BA	PFP model, and it exhibits the
rich-club phenomenon as strong, as the PFP model. There-
fore the IG model is smaller than the BA	PFP model, but
not as small as the PFP model.

E. Short cycles—triangle coefficient

Short cycles, i.e., triangles and quadrangles, encode the
redundancy information in a network because the multiplic-
ity of paths between any two nodes increases with the den-
sity of short cycles �11,12�. The triangle coefficient kt is de-
fined as the number of triangles that a node shares, or
the number of links connecting among a node’s nearest
neighbors. The clustering coefficient �10� can be given as
c=

kt

k�k−1�/2 . Comparing with the clustering coefficient, the tri-

angle coefficient is able to infer neighbor clustering informa-
tion of nodes with different degrees, i.e., the correlation be-
tween triangle coefficient and degree.

Figure 9 shows that the density of triangles of the PFP
model and the IG model is significantly larger than that of
the BA model and the BA	PFP model. Figure 10 shows that
the average triangle coefficient of k-degree nodes in the PFP
model and the IG model is one order of magnitude larger
than that of nodes with the same degrees in the BA model
and the BA	PFP model. It is evident that models showing a
stronger rich-club phenomenon contain considerably more
triangles. This is because the interconnections between rich-
club members play a major role on the formation of tri-
angles, not only for the club members themselves, but also
for the peripheral low-degree nodes which have more than
one connections to the rich club.

The disassortative mixing also has a minor impact on the
formation of triangles. When a model exhibits a stronger
disassortative mixing, links of the low-degree nodes are
more likely connected to the rich club, and thus form more
triangles. For example, the PFP model and the IG model
show the same rich-club phenomenon but the PFP model
exhibits a stronger disassortative mixing. Thus, as shown in
Fig. 10, the average triangle coefficient of nodes in the de-
gree area of 2�k�100 in the PFP model is notably larger
than that of nodes with the same degrees in the IG model.

TABLE IV. The PFP model’s sensitivity to parameter � when p=0.4.

Positive-feedback parameter � 0 0.007 0.014 0.021 0.028 0.035 AS graph

Rich-club exponent � −1.49 −1.49 −1.49 −1.49 −1.50 −1.44 −1.481

Rich-club connectivity 
�0.01� 40.3% 44.0% 43.5% 44.8% 46.4% 36.5% 44.3%

Top clique size, nclique 15 16 16 16 20 15 16

Degree distribution P�1� 26.2% 26.4% 26.8% 26.2% 26.4% 22.0% 26.5%

Degree distribution P�2� 33.7% 34.3% 34.8% 33.7% 35.2% 34.7% 30.2%

Degree distribution P�3� 10.5% 10.6% 10.5% 10.5% 12.4% 16.7% 14.8%

Degree distribution exponent � −2.206 −2.219 −2.228 −2.255 −2.321 −2.540 −2.254

Maximum degree kmax 677 875 1356 1950 2519 7045 2070

Assortativity coefficient, � −0.124 −0.172 −0.202 −0.234 −0.279 −0.292 −0.236

Characteristic path length �* 3.55 3.41 3.24 3.07 2.93 2.44 3.12

FIG. 12. Properties of the PFP model when parameter � grows
from 0 to 0.035 while p=0.4, including the degree distribution ex-
ponent �, the rich-club connectivity exponent �, and the assortativ-
ity coefficient �.

FIG. 13. Rich-club connectivity’s power-law exponent � vs pa-
rameters p and �.
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The same can be observed by contrasting the BA	PFP
model against the BA model in the degree area of 3�k
�30.

In summary, the PFP model captures the internet’s short-
est path length and triangle coefficient because these proper-
ties are correlated with other topology properties that have
been produced by the model’s evolution mechanisms.

IV. SENSITIVITY TO MODEL PARAMETERS

The PFP model’s interactive growth and positive-
feedback preference are controlled by the parameters p and
�, respectively. In the previous section the PFP model uses
p=0.4 and �=0.021 to generate internetlike networks. In this
section we provide more detailed numerical results to sup-
port the above analysis. We examine how the parameters
control the evolution mechanisms and therefore change the
generated topology properties. We first study the model’s
sensitivity to individual parameters by making one parameter
a variable and fixing the other as a constant. Then we inves-
tigate the model’s reactions when both parameters are vari-
ables.

A. Sensitivity to parameter p

Table III and Fig. 11 show how topology properties of the
PFP model change when the interactive growth parameter p
increases from 0 to 0.8 while the positive-feedback param-
eter �=0 �i.e., equivalent to the linear preference�. It is clear
that when p increases, the rich-club phenomenon is getting
stronger and stronger as the value of rich-club exponent �
decreases monotonically. This is because the ratio of new
internal links to new external links added to the model in-
creases with p �see Eq. �4��. When more internal links are
added, the rich nodes become more tightly interconnected.
Also the interactive growth has a direct impact on the distri-
bution of low degrees. When p increases, the generated net-
work contains more one-degree nodes and less two-degree
nodes �see P�1� and P�2� in Table III�. When p=0.4, the
interactive growth well resembles the internet AS graph’s

rich-club phenomenon and distribution of low degrees at the
same time.

As analyzed in the above, the interactive growth has a
degree-leap effect. When p increases, more three-degree
leaps �see Fig. 1�c�� and less two-degree leaps �see Fig. 1�d��
take place during the network growth. Thus the overall
degree-leap effect become stronger. As a result the power-
law degree distribution becomes flatter with an increased
value of the degree distribution exponent �. As shown in Fig.
11, when p increases to 0.4, � exceeds that of the internet AS
graph. We will see in the next section that this excessive
increase of � will be counterbalanced by the positive-
feedback preference’s opposite effect on �.

When p grows from 0 to 0.8, the strengthened degree-leap
effect also enlarges the obtained maximum degree, and
strengthens the model’s disassortative mixing behavior indi-
cated by a decreasing value of the assortativity coefficient.
As expected, when the rich-club phenomenon and the disas-
sortative mixing become stronger, the generated networks
get smaller and smaller as indicated by a decreasing value of
the characteristic path length. However, when p=0.8 and the
model exhibits a stronger rich-club phenomenon than the
internet AS graph, the PFP model’s characteristic path length
is still not as small as the internet. This is because the mod-
el’s disassortative mixing is as strong as the internet. In order
to resemble the internet, the interactive growth needs to be
combined with the positive-feedback preference.

B. Sensitivity to parameter �

Table IV and Fig. 12 show how topology properties of the
PFP model change when the positive-feedback parameter �
increases from 0 to 0.035 while the interactive growth pa-
rameter p=0.4. It is clear that the positive-feedback param-
eter � has a fairly limited impact on the obtained rich-club
exponent �, which almost remains the same. When � in-
creases, greater preference is given to high-degree nodes;
consequently the maximum degree increases and the network
becomes more disassortative mixed. As expected, the char-
acteristic path length decreases steadily when the network’s
disassortative mixing is getting stronger. When the parameter

FIG. 14. Degree distribution’s power-law exponent � vs param-
eters p and �.

FIG. 15. Assortativity coefficient � vs parameters p and �.
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� increases, the degree distribution power-law exponent �
slightly decreases. This is because when the positive-
feedback preference gets stronger, the richest nodes attract so
many new links that they suppress the degree growth of
other nodes, including those with medium to high degrees.
When �=0.021 �and p=0.4�, the PFP model closely matches
all the topology properties of the internet AS graph.

As shown in Fig. 12, by tuning the parameter � from 0 to
0.028, the PFP model is capable of generating a wide range
of disassortative mixing networks with the value of the as-
sortativity coefficient � decreasing monotonically from
−0.12 to −0.28, which encompasses most technological and
biological networks reported in Ref. �25�. Notably, the PFP
model achieves this while keeping the rich-club exponent
and the degree distribution exponent largely unchanged.

�=0.028 is the model’s tipping point, beyond which the
network structure changes dramatically, e.g., the degree dis-
tribution exponent � decreases rapidly. This is because the
preferential selection becomes so biased that super-rich
nodes start to emerge. These extremely rich nodes dominate
the network growth and make the network grow towards a
starlike structure.

C. Sensitivity to both parameters

Figures 13–15 are contour plots showing how three topol-
ogy properties, i.e., the rich-club connectivity exponent �,
the degree distribution exponent �, and the assortativity co-
efficient �, change when both the parameters are variables.
Figure 13 clearly shows that the value of rich-club exponent
� is sensitive to the interactive growth parameter p and is
unsensitive to the positive-feedback preference parameter �.
When parameter p grows, the rich-club phenomenon be-
comes stronger. Figure 14 shows that the two mechanisms
have opposite effects on the value of degree distribution ex-
ponent �. In general, the exponent � increases when param-
eter p increases and parameter � decreases.

Figure 15 shows that the PFP model’s disassortative mix-
ing becomes stronger when either of the two parameters in-
creases. The assortativity coefficient � is more sensitive to
parameter � than to parameter p. We notice that when p
�0.5, the network’s disassortative mixing actually becomes
weaker. This is because, when p�0.5, the network starts to
acquire more internal links than external links, i.e.,
Lint /Lext�1 �see Eq. �4��. The increased new internal links
among the rich nodes weaken the disassortative mixing be-
havior of the network.

V. CONCLUSION

The internet has an extremely complex structure. The PFP
model demonstrates a way to simultaneously reproduce

many topology properties of the internet. The model
achieves this by using two generic algorithms which are de-
signed to replicate the evolution dynamics observed on the
internet historic data. In this paper we have used the numeri-
cal method to investigate the success of the model.

Based on detailed simulation results, we show that the
rich-club phenomenon is primarily controlled by the interac-
tive growth mechanism alone. We point out that this is be-
cause the rich-club connectivity increases with the number of
new internal links which are added between rich nodes. The
interactive growth also determines the probability of new
nodes’ initial degrees and thus controls the distribution of
low degrees obtained in the generated network.

The PFP model’s maximum degree is as large as the in-
ternet because both the interactive growth and the positive-
feedback preference accelerate the degree growth rate. The
interactive growth does so by the degree-leap effect, whereas
the positive-feedback preference achieves so by giving stron-
ger preference to high-degree nodes. The two mechanisms
have opposite effects on the value of power-law exponent of
degree distribution. The interactive growth increases the
value whereas the positive-feedback preference slightly de-
creases the value.

We have explained that the origin of the disassortative
mixing has been, unintentionally, embedded in the PFP mod-
el’s two evolution mechanisms, which not only enlarge the
gap between the high-degree nodes and the low-degree
nodes, but more critically, they increase the degree difference
between end nodes of a link.

Our analysis suggests that the reason that the PFP model
also captures other properties of the internet, such as shortest
path length and triangle coefficient, is that these properties
are correlated with other properties, in other words, they are
constrained by others. For example, the internet is small be-
cause the rich-club functions as a super traffic hub, while the
disassortative mixing behavior ensures peripheral low-degree
nodes always close to the hub.

By investigating the PFP model’s sensitivity to the
mechanism parameters, we obtain more evident details on
how the two evolution mechanisms profoundly control the
model’s growth dynamics and therefore effectively change
the generated topology properties. For example, we show
that by tuning the positive-feedback parameter �, the PFP
model is able to generate a wide range of disassortative mix-
ing networks while keeping the rich-club exponent and the
degree distribution exponent almost unchanged.

This work represents a better understanding of the internet
topology evolution dynamics. It facilitates the ongoing effort
on a mathematical analysis of the PFP model. This work also
complements the research on the evolution dynamics and the
structural constraints of complex networks in general.
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