We present a new, systematic approach for analyzing network topologies. We
first introduce the dK-series of probability distributions specifying all
degree correlations within d-sized subgraphs of a given graph G. Increasing
values of d capture progressively more properties of G at the cost of more
complex representation of the probability distribution. Using this series, we
can quantitatively measure the distance between two graphs and construct random
graphs that accurately reproduce virtually all metrics proposed in the
literature. The nature of the dK-series implies that it will also capture any
future metrics that may be proposed. Using our approach, we construct graphs
for d=0,1,2,3 and demonstrate that these graphs reproduce, with increasing
accuracy, important properties of measured and modeled Internet topologies. We
find that the d=2 case is sufficient for most practical purposes, while d=3
essentially reconstructs the Internet AS- and router-level topologies exactly.
We hope that a systematic method to analyze and synthesize topologies offers a
significant improvement to the set of tools available to network topology and
protocol researchers.Comment: Final versio