347 research outputs found

    Near-Infrared InGaAs Detectors for Background-limited Imaging and Photometry

    Get PDF
    Originally designed for night-vision equipment, InGaAs detectors are beginning to achieve background-limited performance in broadband imaging from the ground. The lower cost of these detectors can enable multi-band instruments, arrays of small telescopes, and large focal planes that would be uneconomical with high-performance HgCdTe detectors. We developed a camera to operate the FLIR AP1121 sensor using deep thermoelectric cooling and up-the-ramp sampling to minimize noise. We measured a dark current of 163 e~e- s−1^{-1} pix−1^{-1}, a read noise of 87 e~e- up-the-ramp, and a well depth of 80k e~e-. Laboratory photometric testing achieved a stability of 230 ppm hr−1/2^{-1/2}, which would be required for detecting exoplanet transits. InGaAs detectors are also applicable to other branches of near-infrared time-domain astronomy, ranging from brown dwarf weather to gravitational wave follow-up.Comment: Submitted to Proc. SPIE, Astronomical Telescopes + Instrumentation (2014

    Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry

    Full text link
    We have designed, constructed, and tested an InGaAs near-infrared camera to explore whether low-cost detectors can make small (<1 m) telescopes capable of precise (<1 mmag) infrared photometry of relatively bright targets. The camera is constructed around the 640x512 pixel APS640C sensor built by FLIR Electro-Optical Components. We designed custom analog-to-digital electronics for maximum stability and minimum noise. The InGaAs dark current halves with every 7 deg C of cooling, and we reduce it to 840 e-/s/pixel (with a pixel-to-pixel variation of +/-200 e-/s/pixel) by cooling the array to -20 deg C. Beyond this point, glow from the readout dominates. The single-sample read noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory testing with a star field generated by a lenslet array shows that 2-star differential photometry is possible to a precision of 631 +/-205 ppm (0.68 mmag) hr^-0.5 at a flux of 2.4E4 e-/s. Employing three comparison stars and de-correlating reference signals further improves the precision to 483 +/-161 ppm (0.52 mmag) hr^-0.5. Photometric observations of HD80606 and HD80607 (J=7.7 and 7.8) in the Y band shows that differential photometry to a precision of 415 ppm (0.45 mmag) hr^-0.5 is achieved with an effective telescope aperture of 0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited photometry of brighter dwarfs with particular advantage for late-M and L types. In addition, one might acquire near-infrared photometry simultaneously with optical photometry or radial velocity measurements to maximize the return of exoplanet searches with small telescopes.Comment: Accepted to PAS

    Dental Workforce Report of Indiana University School of Dentistry Graduates and Other Practicing Dentists in Indiana

    Get PDF
    All dentists who renewed their Indiana licenses on - line in 2010 or 2012 were asked to complete a voluntary survey instrument that ha d a 95.4% response rate 1 in 2010 and 80.7% response rate 2 in 2012. The purpose of this study was to describe the dental workforce in Indiana with a focus on comparing graduates from the Indiana University School of Dentistry (IUSD) to all other practicing ( n on - IUSD ) dentists in Indiana. Of primary interest is how well the graduates of IUSD are meeting the oral health needs of the population of the state, particularly in the rural and underserved areas. Using data from the Office of Alumni Relations at IUPUI, license numbers of IUSD alumni were matched to the license numbers of individuals in the 2010 or 2012 Indiana Dentist Licensure Survey datasets. Individuals whose license numbers matched with the alumni list were identified as “IUSD” graduates and those that did not match were identified as “non - IUSD” graduates. This report compares responses between 2,203 IUSD and 835 n on - IUSD graduates who renewed their licenses and completed the Indiana Dentist Licensure Surveys in 2010 or 2012, respectively. Lastly, most of the differences between groups were found to be statistically significant due to the large sample size of IUSD graduates compared to non - IUSD graduates. Thus, for the purposes of this report if the differences between groups were noted to be at least 10 percent they were considered remarkable and reported as such

    Potential for Managed Aquifer Recharge to Enhance Fish Habitat in a Regulated River

    Get PDF
    Managed aquifer recharge (MAR) is typically used to enhance the agricultural water supply but may also be promising to maintain summer streamflows and temperatures for cold-water fish. An existing aquifer model, water temperature data, and analysis of water administration were used to assess potential benefits of MAR to cold-water fisheries in Idaho’s Snake River. This highly-regulated river supports irrigated agriculture worth US 10billionandrecreationaltroutfisheriesworth10 billion and recreational trout fisheries worth 100 million. The assessment focused on the Henry’s Fork Snake River, which receives groundwater from recharge incidental to irrigation and from MAR operations 8 km from the river, addressing (1) the quantity and timing of MAR-produced streamflow response, (2) the mechanism through which MAR increases streamflow, (3) whether groundwater inputs decrease the local stream temperature, and (4) the legal and administrative hurdles to using MAR for cold-water fisheries conservation in Idaho. The model estimated a long-term 4%–7% increase in summertime streamflow from annual MAR similar to that conducted in 2019. Water temperature observations confirmed that recharge increased streamflow via aquifer discharge rather than reduction in river losses to the aquifer. In addition, groundwater seeps created summer thermal refugia. Measured summer stream temperature at seeps was within the optimal temperature range for brown trout, averaging 14.4 °C, whereas ambient stream temperature exceeded 19 °C, the stress threshold for brown trout. Implementing MAR for fisheries conservation is challenged by administrative water rules and regulations. Well-developed and trusted water rights and water-transaction systems in Idaho and other western states enable MAR. However, in Idaho, conservation groups are unable to engage directly in water transactions, hampering MAR for fisheries protection

    Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017

    Get PDF
    We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low-mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ~3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ~4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ~0.15 microns or larger, or ~0.06 microns or smaller, with 2-sigma confidence.Comment: 16 pages, 12 figures, submitted to ApJ on October 8th, 201

    The Pan-STARRS Moving Object Processing System

    Full text link
    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table

    An integrated environmental and human systems modeling framework for Puget Sound restoration planning

    Get PDF
    Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a more coordinated systems-based restoration approach is needed to achieve recovery goals. This presentation describes our collaborative effort to develop and apply an integrated environmental and human systems modeling framework for the Puget Sound Basin, inclusive of all marine and land areas (1,020 and 12,680 sq. mi.). Our goal is to establish a whole-basin systems modeling framework that dynamically simulates biophysical interactions and transfers (water, nutrients, contaminants, biota) across terrestrial-marine boundaries. The core environmental models include a terrestrial ecohydrological model (VELMA), an ocean circulation and biogeochemistry model (Salish Sea Model), and an ocean food web model (Atlantis). This environmental subsystem will be linked with an agent-based modeling subsystem (e.g., Envision) that allows human decision-makers to be represented in whole-basin simulations. The integrated environmental and human systems framework aims to facilitate discourse among different stakeholders and decision makers (agents) and enable them play out the ecological, social and economic consequences of alternative ecosystem restoration choices. All of these models are currently being applied in Puget Sound, but they have not yet been integrated. The linked models will better capture the propagation of human impacts throughout the terrestrial-marine ecosystem, and thereby provide a more effective decision support tool for addressing restoration of high priority environmental endpoints, such as the Vital Signs identified by the Puget Sound Partnership (http://www.psp.wa.gov/vitalsigns/). Our overview will include examples of existing stand-alone model applications, and conceptual plans for linking models across terrestrial-marine boundaries. The Puget Sound multi-model framework described here can potentially be expanded to address the entire Salish Sea transboundary ecosystem (https://www.eopugetsound.org/maps/salish-sea-basin-and-water-boundaries)
    • 

    corecore