281 research outputs found

    Enhancing weak transient signals in SEVIRI false color imagery: application to dust source detection in southern Africa

    Get PDF
    A method is described to significantly enhance the signature of dust events using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). The approach involves the derivation of a composite clear-sky signal for selected channels on an individual time step and pixel basis. These composite signals are subtracted from each observation in the relevant channels to enhance weak transient signals associated with either (a) low levels of dust emission or (b) dust emissions with high salt or low quartz content. Different channel combinations, of the differenced data from the steps above, are then rendered in false color imagery for the purpose of improved identification of dust source locations and activity. We have applied this clear-sky difference (CSD) algorithm over three (globally significant) source regions in southern Africa: the Makgadikgadi Basin, Etosha Pan, and the Namibian and western South African coast. Case study analyses indicate three notable advantages associated with the CSD approach over established image rendering methods: (i) an improved ability to detect dust plumes, (ii) the observation of source activation earlier in the diurnal cycle, and (iii) an improved ability to resolve and pinpoint dust plume source locations

    Understanding links between water scarcity and violent conflicts in the Sahel and Lake Chad Basin using the water footprint concept

    Get PDF
    Whilst there are several empirical studies linking water scarcity and violent conflicts, existing quantitative studies use mostly climate and environmental variables even though such variables have been shown to not be strong predictors of water conflicts by some studies. The aim of this study was to use the water footprint concept and the Falkenmark index to identify water scarcity hotspots at the sub-national scale and to understand the links between water scarcity and violent conflicts in the Sahel and Lake Chad Basin over a period of two decades (2000–2021). We achieve this by developing five water scarcity metrics at a monthly timescale using runoff, soil moisture, potential evapotranspiration, water consumption and demographic data. The developed metrics show high levels of water scarcity across the study area during the dry, pre-monsoon and post-monsoon seasons. Analyses further reveal high green water scarcity (GWS) (soil moisture deficit) and low Falkenmark index scores (water stress) during the dry, pre-monsoon and post-monsoon seasons, across all reported water conflict locations. This suggest that there is an indirect link between GWS, the Falkenmark index scores and water conflicts. Results from this study may be used to enhance water management, mitigate, and prevent water conflicts in the study area and likewise the methodology adopted may be used to address water scarcity and conflicts in other region

    Physical mechanisms affecting phytoplankton variability along the Chilean coast

    Get PDF
    Chile has high phytoplankton production due to being a classic example of an Eastern Boundary Upwelling System. Monthly averaged chlorophyll-α (Chl) and physical parameters (sea surface temperature, precipitation rate, southerly and westerly winds) were studied off the Chilean coast from 2002 to 2018, in order to understand the primary production along this important ocean margin. The coastal margin was split into three zones and ten sub-sections. The Northern Zone had a low phytoplankton production with small seasonal variability, except in its north. This pattern is due to a narrow shelf, weak winds, lack of precipitation and relatively stable weather conditions driven by the Southeast Pacific Subtropical Anticyclone (SPSA). The Central Zone presented a seasonally varying production, with a high Chl concentration in summer and early spring. This is linked to the SPSA movement and sunlight reduction during the winter. A high Chl activity is seen in the Southern Zone despite this Zone being at the limits of the SPSA effect, leading to weak longshore winds only during the warm season. Overall, this study has demonstrated the importance of shelf width and the upwelling driven by the presence or absence of the SPSA for ocean primary production. Thus, the most productive region is from 35°S to 45°S owing to both variables being present

    Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera

    Get PDF
    Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements

    Evaluating the accuracy of gridded water resources reanalysis and evapotranspiration products for assessing water security in poorly gauged basins

    Get PDF
    Achieving water security in poorly gauged basins is critically hindered by a lack of in situ river discharge data to assess past, current, and future evolution of water resources. To overcome this challenge, there has been a shift toward the use of freely available satellite and reanalysis data products. However, due to inherent bias and uncertainty, these secondary sources require careful evaluation to ascertain their performance before being applied in poorly gauged basins. The objectives of this study were to evaluate river discharge and evapotranspiration estimates from eight gridded water resources reanalysis (WRR), six satellite-based evapotranspiration (ET) products, and ET estimates derived from complimentary relationship (CR–ET) across eight river basins located in Central–West Africa. Results highlight strengths and weaknesses of the different WRR in simulating discharge dynamics and ET across the basins. Likewise, satellite-based products also show some strength and weaknesses in simulating monthly ET. Our results further revealed that the performance of the different models in simulating river discharge and evapotranspiration is strongly influenced by model structure, input data, and spatial resolution. Considering all hydrological model evaluation criteria, FLDAS-Noah, Lisflood, AWRAL, and Terra were among the best performing WRR products while for ET estimates, FLDAS-Noah, Terra, GLEAM3.5a and 3.5b, and PMLV2 outperformed the rest of the products. Given the plethora of WRR and ET products available, it is imperative to evaluate their performance in representative gauged basins to identify products that can be applied in each region. However, the choice of a particular product will depend on the application and user requirements. Taking this together, results from this study suggest that gridded WRR and ET products are a useful source of data for assessing water security in poorly gauged basins

    Meteorological effects of the solar eclipse of 20 March 2015: analysis of UK Met Office automatic weather station data and comparison with automatic weather station data from the Faroes and Iceland.

    Get PDF
    Here, we analyse high-frequency (1 min) surface air temperature, mean sea-level pressure (MSLP), wind speed and direction and cloud-cover data acquired during the solar eclipse of 20 March 2015 from 76 UK Met Office weather stations, and compare the results with those from 30 weather stations in the Faroe Islands and 148 stations in Iceland. There was a statistically significant mean UK temperature drop of 0.83±0.63°C, which occurred over 39 min on average, and the minimum temperature lagged the peak of the eclipse by about 10 min. For a subset of 14 (16) relatively clear (cloudy) stations, the mean temperature drop was 0.91±0.78 (0.31±0.40)°C but the mean temperature drops for relatively calm and windy stations were almost identical. Mean wind speed dropped significantly by 9% on average during the first half of the eclipse. There was no discernible effect of the eclipse on the wind-direction or MSLP time series, and therefore we can discount any localized eclipse cyclone effect over Britain during this event. Similar changes in air temperature and wind speed are observed for Iceland, where conditions were generally clearer, but here too there was no evidence of an eclipse cyclone; in the Faroes, there was a much more muted meteorological signature.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'

    On the formation of sand ramps: A case study from the Mojave Desert

    Get PDF
    Sand ramps are dune-scale sedimentary accumulations found at mountain fronts and consist of a combination of aeolian sands and the deposits of other geomorphological processes associated with hillslope and fluvial activity. Their complexity and their construction by wind, water and mass movement means that sand ramps potentially hold a very rich store of palaeoenvironmental information. However, before this potential can be realised a full understanding of their formation is necessary. This paper aims to provide a better understanding of the principal factors influencing the development of sand ramps. It reviews the stratigraphic, chronometric and sedimentological evidence relating to the past development of sand ramps, focussing particularly on Soldier Mountain sand ramp in the Mojave Desert, as well as using observations of the modern movement of slope material to elucidate the formation of stone horizons within sand ramps. Findings show that sand ramps cannot easily be interpreted in terms of a simple model of fluctuating palaeoenvironmental phases from aeolian dominated to soil/fluvial dominated episodes. They accumulate quickly (perhaps in < 5 ka), probably in a single phase before becoming relict. Based on the evidence from Soldier Mountain, they appear strongly controlled by a ‘window of opportunity’ when sediment supply is plentiful and cease to develop when this sediment supply diminishes and/or the accommodation space is filled up. Contemporary observations of stone movement both on rock and sandy sloping surfaces in the Mojave region indicate movement rates in the order of 0.6 and 11 mm yr− 1, which is insufficiently fast to explain how stone horizons could have been moved across and been incorporated into sand ramps on multiple occasions. Stone horizons found within the aeolian sediments lack evidence for soil development and are interpreted as very short-term events in which small streams moved and splayed discontinuous stone horizons across the sand ramp surface before aeolian deposition resumed. Surface stone horizons may form by creep from mountain slope sources across sand ramps but require enhanced speed compared to measured rates of runoff creep. We propose the mechanism of fluvio-aeolian creep. Our study suggests that current models of alternating aeolian and colluvial deposition within sand ramps, their palaeoenvironmental significance and indeed how sand ramps are distinguished from other dune forms require amendment

    Combining Sentinel-1 and Landsat 8 does not improve classification accuracy of tropical selective logging

    Get PDF
    Tropical forests play a key role in the global carbon and hydrological cycles, maintaining biological diversity, slowing climate change, and supporting the global economy and local livelihoods. Yet, rapidly growing populations are driving continued degradation of tropical forests to supply wood products. The United Nations (UN) has developed the Reducing Emissions from Deforestation and Forest Degradation (REDD+) programme to mitigate climate impacts and biodiversity losses through improved forest management. Consistent and reliable systems are still needed to monitor tropical forests at large scales, however, degradation has largely been left out of most REDD+ reporting given the lack of effective monitoring and countries mainly focus on deforestation. Recent advances in combining optical data and Synthetic Aperture Radar (SAR) data have shown promise for improved ability to monitor forest losses, but it remains unclear if similar improvements could be made in detecting and mapping forest degradation. We used detailed selective logging records from three lowland tropical forest regions in the Brazilian Amazon to test the effectiveness of combining Landsat 8 and Sentinel-1 for selective logging detection. We built Random Forest models to classify pixel-based differences in logged and unlogged regions to understand if combining optical and SAR improved the detection capabilities over optical data alone. We found that the classification accuracy of models utilizing optical data from Landsat 8 alone were slightly higher than models that combined Sentinel-1 and Landsat 8. In general, detection of selective logging was high with both optical only and optical-SAR combined models, but our results show that the optical data was dominating the predictive performance and adding SAR data introduced noise, lowering the detection of selective logging. While we have shown limited capabilities with C-band SAR, the anticipated opening of the ALOS-PALSAR archives and the anticipated launch of NISAR and BIOMASS in 2023 should stimulate research investigating similar methods to understand if longer wavelength SAR might improve classification of areas affected by selective logging when combined with optical data

    The hydrology of glacier-bed overdeepenings : sediment transport mechanics, drainage system morphology, and geomorphological implications

    Get PDF
    Evacuation of basal sediment by subglacial drainage is an important mediator of rates of glacial erosion and glacier flow. Glacial erosion patterns can produce closed basins (i.e., overdeepenings) in glacier beds, thereby introducing adverse bed gradients that are hypothesised to reduce drainage system efficiency and thus favour basal sediment accumulation. To establish how the presence of a terminal overdeepening might mediate seasonal drainage system evolution and glacial sediment export, we measured suspended sediment transport from Findelengletscher, Switzerland during late August and early September 2016. Analyses of these data demonstrate poor hydraulic efficiency of drainage pathways in the terminus region but high sediment availability. Specifically, the rate of increase of sediment concentration with discharge was found to be significantly lower than that anticipated if channelised flow paths were present. Sediment availability to these flow paths was also higher than would be anticipated for discrete bedrock-floored subglacial channels. Our findings indicate that subglacial drainage in the terminal region of Findelengletscher is dominated by distributed flow where entrainment capacity increases only marginally with discharge, but flow has extensive access to an abundant sediment store. This high availability maintains sediment connectivity between the glacial and proglacial realm and means daily sediment yield is unusually high relative to yields exhibited by similar Alpine glaciers. We present a conceptual model illustrating the potential influence of ice-bed morphology on subglacial drainage evolution and sediment evacuation mechanics, patterns and yields, and recommend that bed morphology should be an explicit consideration when monitoring and evaluating glaciated basin sediment export rates
    • …
    corecore