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Abstract. Achieving water security in poorly gauged basins

is critically hindered by a lack of in situ river discharge

data to assess past, current, and future evolution of wa-

ter resources. To overcome this challenge, there has been a

shift toward the use of freely available satellite and reanaly-

sis data products. However, due to inherent bias and uncer-

tainty, these secondary sources require careful evaluation to

ascertain their performance before being applied in poorly

gauged basins. The objectives of this study were to eval-

uate river discharge and evapotranspiration estimates from

eight gridded water resources reanalysis (WRR), six satellite-

based evapotranspiration (ET) products, and ET estimates

derived from complimentary relationship (CR–ET) across

eight river basins located in Central–West Africa. Results

highlight strengths and weaknesses of the different WRR

in simulating discharge dynamics and ET across the basins.

Likewise, satellite-based products also show some strength

and weaknesses in simulating monthly ET. Our results fur-

ther revealed that the performance of the different models in

simulating river discharge and evapotranspiration is strongly

influenced by model structure, input data, and spatial reso-

lution. Considering all hydrological model evaluation crite-

ria, FLDAS-Noah, Lisflood, AWRAL, and Terra were among

the best performing WRR products while for ET estimates,

FLDAS-Noah, Terra, GLEAM3.5a and 3.5b, and PMLV2

outperformed the rest of the products. Given the plethora of

WRR and ET products available, it is imperative to evaluate

their performance in representative gauged basins to identify

products that can be applied in each region. However, the

choice of a particular product will depend on the application

and user requirements. Taking this together, results from this

study suggest that gridded WRR and ET products are a useful

source of data for assessing water security in poorly gauged

basins.

1 Introduction

River discharge is one of the most important hydrological

variables underpinning water resources management, aquatic

ecosystems sustainability, flood prediction, and drought

warnings at different scales (McNally et al., 2017; Couas-

non et al., 2020). However, observed river discharge data

are often not available at the exact location where critical

water management decisions need to be made (Neal et al.,

2009). This is especially the case in developing and semi-

arid/arid regions where discharge gauging stations are sparse

(Krabbenhoft et al., 2022), while the number of existing sta-

tions are declining (Rodríguez et al., 2020). Despite the acute

shortage in observed data, developing regions are areas that

are more vulnerable to adverse hydroclimatological condi-

tions (Byers et al., 2018; Kabuya et al., 2020). Furthermore,

achieving water security in poorly gauged basins remains a

critical development challenge as climate change, population

growth, rapid urbanization, and economic growth continue to

exert pressure on available water resources under hydrologi-

cal uncertainty (Flörke et al., 2018; Hirpa et al., 2019). This

highlights the urgent need for more reliable data to better as-

Published by Copernicus Publications on behalf of the European Geosciences Union.



5900 E. Nkiaka et al.: Evaluating the accuracy of gridded water resources reanalysis and ET products

sess past, current, and future evolution of water resources,

and to predict extreme hydroclimatological events so that

better strategies can be put in place to enhance water man-

agement and mitigate the impact of extreme events (Nkiaka

et al., 2020; Slater et al., 2021). Water security in this study

refers to the availability of sufficient quantities of water for

human use and ecosystem sustainability.

Evapotranspiration (ET) is another important hydrologi-

cal variable that represents the linkage between water, en-

ergy and carbon cycles, and ecosystem services, and it is the

second largest process in the hydrological cycle after precip-

itation (Zhang et al., 2019). Therefore, ET plays a critical

role in water availability at different scales. As such, accu-

rate estimates of ET are also crucial for water management

operations such as basin-scale water balance estimation, ir-

rigation planning, estimating water footprint, and assessing

the impact of climate change on water availability. How-

ever, globally, in situ ET monitoring stations are also scarce

while the existing monitoring network cannot provide suffi-

cient information on the temporal and spatial trends of ET at

large scales (Laipelt et al., 2021). ET data scarcity may there-

fore limit our ability to understand changes in the hydrolog-

ical cycle and water security in the context of environmental

change and hydrological uncertainty.

To enhance water security in poorly gauged basins, there

has been a progressive shift toward the use of gridded data

derived from satellite and reanalysis (Odusanya et al., 2019;

Nkiaka, 2022a). This is because gridded data products can

provide high spatial resolution and long-term homogeneous

data for previously unmonitored areas at scales that are suit-

able for studying changes in the hydrological cycle and for

water management applications (Sheffield et al., 2018). Sev-

eral gridded data products with global coverage have been

produced in recent decades including reanalysis and satellite-

based products. Examples of reanalysis products include

WATCH Forcing Data applied to ERA-Interim (Weedon et

al., 2014) and Climate Forecast System Reanalysis (Saha

et al., 2014). There is also a plethora of satellite products

for different hydrometeorological variables such as precipita-

tion, temperature, soil moisture, and ET. For satellite-derived

ET estimates, it is worth noting that this variable cannot be

directly measured by satellites, but rather derived from phys-

ical variables observed by satellites from space such as ra-

diation flux. As such, satellite-derived ET estimates could

rather be referred to as model outputs constrained by satel-

lite data. Another technique used to produce ET estimates is

the complimentary relationship (Ma et al., 2021). Consider-

ing the way gridded ET products are derived, they tend to

suffer from large biases (Weerasinghe et al., 2020; McNa-

mara et al., 2021) and therefore need to be validated before

use. In fact, it is argued that validating gridded ET products is

an essential step in understanding their applicability and use-

fulness in water management operations (Blatchford et al.,

2020).

Previously, much attention in the development of grid-

ded environmental data was focused on hydrometeorologi-

cal variables such as precipitation and temperature. However,

rapid advancement in computer technology has led to the

development of gridded water resources reanalysis (WRR)

with quasi global coverage using both land surface mod-

els (LSMs) and global hydrological models (GHMs) driven

by satellite and reanalysis data. Examples of WRR products

include the Global Land Data Assimilation System (GLDAS)

(Rodell et al., 2004), “The Global Earth Observation for

Integrated Water Resources Assessment” (eartH2Observe)

(Schellekens et al., 2017), and the Global Flood Aware-

ness System (GloFAS-ERA5) (Harrigan et al., 2020). Several

studies have demonstrated that model-based gridded WRR

products can be used as an alternative to observe river dis-

charge in poorly gauged basins to do the following: (1) un-

derstand hydrological processes (Koukoula et al., 2020),

(2) support transboundary water management (Sikder et al.,

2019), (3) identify flood events (Gründemann et al., 2018;

López et al., 2020), and (4) support national water policies

(Rodríguez et al., 2020). These examples demonstrate that

WRR products have great potential for addressing water se-

curity challenges in poorly gauged basins. Despite their nu-

merous advantages, outputs from WRR are also fraught with

uncertainties resulting from errors in the forcing data, model

structure, and the parameterization of the physical processes

in the model scheme (Koukoula et al., 2020). Therefore, it

is necessary to evaluate the performance of these products

against observed river discharge where available.

Whilst the use of outputs from WRR in water management

has gained significant attention in many ungauged or poorly

gauged regions such as Asia and Latin America (López et

al., 2020; Rodríguez et al., 2020; Sikder et al., 2019), they

remain largely under-utilized in Africa. For example, there

are only a few case studies reporting on the use of these

products in the upper Blue Nile River basin (Koukoula et

al., 2020; Lakew et al., 2020) and the Zambezi River basin

(Gründemann et al., 2018). Considering the scale of water in-

security in Africa, compounded by acute data scarcity (Nki-

aka et al., 2021), we feel that evaluating the performance of

gridded WRR products in Africa may enhance their adop-

tion in water management in the region. On the other hand,

several studies evaluating the performance of gridded data

in Africa have focused mostly on precipitation (Dinku et al.,

2018; Satgé et al., 2020) while few studies that have eval-

uated gridded ET products focused on large basins (Blatch-

ford et al., 2020; Weerasinghe et al., 2020; McNamara et al.,

2021), and mostly adopted an annual timescale. This may be

attributed to the large scale of the basins which is ideal for the

application of satellite data and the coarse spatial resolution

of some of the ET products. The availability of high spatial

and temporal resolution ET products suggests that it is now

possible to evaluate these products in small- to medium-size

basins and at a higher temporal resolution.

Hydrol. Earth Syst. Sci., 26, 5899–5916, 2022 https://doi.org/10.5194/hess-26-5899-2022
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Figure 1. Locations of the eight river basins where the performance of WRR and gridded ET products were evaluated.

The objectives of this paper were to (1) evaluate the per-

formance of eartH2Observe Tier 1 and other WRR prod-

ucts in simulating discharge and evapotranspiration in se-

lected small- to medium-size basins in Central–West Africa,

and (2) evaluate the performance of six satellite-based grid-

ded ET estimates and ET estimates obtained using the com-

plimentary relationship (CR–ET). Considering that only a

few studies have attempted to evaluate gridded WRR and

ET products over Africa, this paper contributes to the con-

temporary debate on the performance of these products and

how they can be used to assess water security in poorly

gauged basins. We evaluated ET estimates from WRR and

other sources considering that users needs for the application

of these products may vary. Hence our evaluation covered a

wide range of models and products to align with the needs of

different users.

2 Materials and methods

2.1 Study area

The selected basins are located in Central–West Africa rang-

ing in size from 9000 to 499 000 km2 (Fig. 1). Rainfall in

the region is mostly controlled by the north–south move-

ment of the intertropical convergence zone (ITCZ). The main

criteria for selecting the basins were (1) availability of ob-

served river discharge data and (2) for the period of the avail-

able discharge data to coincide with the period when grid-

ded WRR and ET data are also available. Model evaluation

timestep was determined by the timestep of river discharge

data. Shapefiles for all the basins were obtained from Hy-

droSHEDS, locations of the discharge gauging stations were

obtained from the respective data sources, and the area of

each basin was calculated from the basin shapefiles. Hy-

droSHEDS drainage network offers the unique opportunity

to generate watershed boundaries for GRDC (Global River

Discharge Centre) gauging stations using a proofed dataset

and applying a consistent methodology. Table 1 shows that

some of the basins are transboundary in nature.

2.2 Input data

2.2.1 Water resources reanalysis (WRR)

The WRR product evaluated in this study includes “The

Global Earth Observation for Integrated Water Resources

Assessment” (eartH2Observe), Famine Early Warning Sys-

tems Network (FEWS NET) Land Data Assimilation

System (FLDAS), and TerraClimate. The eartH2Observe

Tier 1 product consists of a multi-model ensemble of 10

global models at a spatial resolution of 0.5◦ × 0.5◦ span-

ning from 1979 to 2012 and driven by WATCH Forc-

ing Data methodology applied to ERA-Interim reanaly-

sis (WFDEI) data (Schellekens et al., 2017). WRR data

from eartH2Observe are freely available at https://wci.

earth2observe.eu/portal/ (last access: 15 May 2022). Model

evaluation here omits the Joint UK Land Environment Simu-

https://doi.org/10.5194/hess-26-5899-2022 Hydrol. Earth Syst. Sci., 26, 5899–5916, 2022
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Table 1. Characteristics of river basins and sources of river discharge data.

Basin Total Transboundary (yes or no) Population Source of

area Country/countries (thousands) river

(km2) discharge

data

Bani 101 600 (Yes) Ivory Coast, Mali, and Burkina Faso 63 766 GRDC

Katsina-Ala 22 963 (Yes) Cameroon and Nigeria 219 875 NHSA

Konkoure 10 250 (No) Guinea-Conakry 13 053 GRDC

Logone 87 953 (Yes) Cameroon, Chad, and Central Africa Republic 44 272 LCBC

Milo 9620 (No) Guinea-Conakry 13 053 GRDC

Mono 21 575 (Yes) Togo, Benin 21 479 Co-author

Oubangui 499 000 (Yes) Central Africa Republic and the Democratic Republic of Congo 88 742 GRDC

Oueme 46,990 (No) Benin 11 488 Co-author

Global River Discharge Centre (GRDC), Nigeria Hydrological Services Agency (NIHSA), Lake Chad Basin Commission (LCBC). Population data sourced from

UNDESA (2019).

lator (JULES), simple water balance model (SWBM), and

the simple conceptual HBV hydrological model (HBV-

SIMREG) as data from the models were not available from

the portal for the selected basins at the time of writing. As

such, seven models and a model ensemble were included in

this study. Evaluation of ET data also omits Lisflood model

as data were not available from the portal at the time writing.

Although there is an available Tier 2 product with a higher

spatial resolution (0.25◦), this study did not utilize these data

as selected basins were not included at the time of conducting

this research. We also evaluated discharge data from FLDAS-

Noah and TerraClimate with spatial resolutions of 0.1 and

0.041◦, respectively. Table 2 provides a brief summary of the

different models used in this study.

2.2.2 Evapotranspiration products

In addition to the ET estimates from the reanalysis prod-

ucts, we also evaluated several satellite-based ET estimates,

including GLEAM3.5a and 3.5b, MODIS16A2, PMLV1,

PMLV2, SSEBop, and estimates obtained through compli-

mentary relationship (Table 3). ET products from WRR have

the same spatial resolution with the discharge estimates while

remote sensing products have different spatial resolutions.

However, we did not resample the ET data to the same resolu-

tion because a previous study has shown that resampling does

not have any significant impact on the results (Weerasinghe

et al., 2020). Table 3 provides a summary of all ET products

evaluated in this study.

2.3 Evaluation data

2.3.1 River discharge

Observed river discharge data were used to evaluate the per-

formance of WRR models and to estimate basin-wide water

balance evapotranspiration (ETWB) using the water balance

concept. The source of the river discharge data is available

in Table 1. Gaps in the discharge data were filled using self-

organizing maps which is a robust method for infilling miss-

ing gaps in hydrometeorological time series (Nkiaka et al.,

2016).

2.3.2 Precipitation

Precipitation data were used to estimate basin-wide wa-

ter balance evapotranspiration (ETWB). To reduce un-

certainties inherent in precipitation estimates, an ensem-

ble mean of three different satellite-based precipitation

products was used. The different products were Cli-

mate Hazards Group InfraRed Precipitation with Station

data (CHIRPS) (Funk et al., 2015), Precipitation Estima-

tion from Remotely Sensed Information using Artificial

Neural Networks-Climate Data Record (PERSIANN-CDR)

(Ashouri et al., 2015), and global precipitation measure-

ment (GPM) (Skofronick-Jackson et al., 2018). The precip-

itation products have spatial resolutions of 0.05, 0.1, and

0.25◦ for CHIRPS, GPM, and PERSIANN-CDR, respec-

tively. These precipitation products have been validated ex-

tensively across the study domain (Satgé et al., 2020; Dem-

bélé et al., 2020) and used in several studies in Africa (Larbi

et al., 2021; Nkiaka, 2022a). The data were downloaded as

the spatial average for each basin using the Climate Engine

research app (Huntington et al., 2017).

2.3.3 GRACE

GRACE data are monthly anomalies of terrestrial water stor-

age changes (TWSCs) used to quantify changes in terrestrial

water storage. The dataset has a global coverage spanning

the period 2003–2017 (Tapley et al., 2019). The data have a

coastline resolution improvement (CRI) filter to reduce leak-

age errors across coastlines and land grids, using scaling fac-

tors derived from the community land model (Wiese et al.,

2016). The data have recently been re-processed to reduce

measurement errors and represent a new generation of grav-

Hydrol. Earth Syst. Sci., 26, 5899–5916, 2022 https://doi.org/10.5194/hess-26-5899-2022
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Table 2. Water resources reanalysis (WRR) products evaluated.

Model provider Model name Model Routing scheme Reference

type

CNRS (Centre ORCHIDEE (Organizing LSM Cascade of linear Krinner et al.

National de la Carbon and Hydrology in reservoirs (2005)

Recherche Dynamic Ecosystems)

Scientifique)

CSIRO AWRA-L (Australian GHM Cascade of linear Van Dijk et al.

(Commonwealth Water Resources reservoirs (2014)

Scientific and Assessment

Industrial Research

Organization)

ECMWF (European HTESSEL (Hydrology LSM CaMa-Flood Balsamo et al.

Centre for Tiled ECMWF Scheme (2009)

Medium-range for Surface Exchanges

Weather Forecasts) over Land)

JRC (Joint Research LISFLOOD GHM Double kinematic Van Der Knijff et

Centre) wave al. (2010)

UniUt (Universiteit PCR-GLOBWB GHM Travel time van Beek et al.

Utrecht) (2011)

MeteoFr (Meteo SURFEX LSM TRIP with stream Decharme et al.

France) (2010)

UniK (Universitat WaterGAP GHM Manning–Strickler Wada et al. (2014)

Kassel)

NASA FLDAS-Noah LSM Soil-layer water McNally et al.

and energy balance (2017)

University of TerraClimate GHM Bucket type model Abatzoglou et al.

California Merced (2018)

Table 3. Characteristics of the different ET products.

ET product Core equation Temporal Spatial References

resolution resolution

GLEAM3.5a and 3.5b Priestley–Taylor Monthly 0.25◦ × 0.25◦ Martens et al. (2017)

MODIS16A2 Penman–Monteith 8 d 1/48◦ × 1/48◦ Mu et al. (2007, 2011)

PMLV1 Penman–Monteith–Leuning Monthly 0.5◦ × 0.5◦ Zhang et al. (2016)

PMLV2 Penman–Monteith–Leuning 8 d 1/192◦ × 1/192◦ Zhang et al. (2019)

SSEBop Surface Energy Balance Monthly 1/96◦ × 1/96◦ Senay et al. (2013)

CR–ET Penman–Monteith Monthly 0.25◦ Ma et al. (2021)

ity solutions that do not require empirical post-processing to

remove correlated errors; as such, the present data are better

than the previous GRACE version that was based on spheri-

cal harmonic gravity solution (Wiese et al., 2016). To mini-

mize errors and uncertainties in the GRACE-derived TWSC

estimates, we used an ensemble mean of three GRACE mas-

con solutions derived from different processing centers in-

cluding Jet Propulsion Laboratory (JPL) RL06M Version 2.0

GRACE mascon solution with a spatial resolution of 0.5◦ ×

0.5◦, Center for Space Research at University of Texas,

Austin (CSR GRACE/GRACE-FO RL06 v02 Mascon Grids)

with a spatial resolution of 0.25◦ × 0.25◦ and NASA GSFC

GRACE and GRACE-FO MASCON RL06 v1.0 with spatial

resolution of 0.5◦ ×0.5◦. GRACE data were used to estimate

basin-wide water balance evapotranspiration (ETWB).

https://doi.org/10.5194/hess-26-5899-2022 Hydrol. Earth Syst. Sci., 26, 5899–5916, 2022
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2.4 Evaluating gridded WRR

WRR models were evaluated following a multi-objective

approach commonly used in evaluating the performance

of hydrological models, including the Nash–Sutcliffe effi-

ciency (NSE), Kling–Gupta efficiency (KGE), and the per-

cent bias (PBIAS). NSE scores range from −∞ to 1, with

1 indicating a perfect representation of observed discharge.

NSE scores ≥ 0.50 can be considered acceptable whereas

NSE scores ≤ 0.0 indicate poor model performance (Mori-

asi et al., 2007). Similarly, the KGE is a dimensionless met-

ric that can be decomposed into three components crucial

for evaluating hydrological model performance accounting

for temporal dynamics (correlation), bias errors (observed

vs. simulated volumes), and variability errors (relative dis-

persion between observations and simulations) (Gupta et al.,

2009). KGE scores range from −∞ to 1, with 1 consid-

ered the ideal value. Next, PBIAS is used to measure the

tendency of the simulated discharge to be larger or smaller

than their observed counterparts (Gupta et al., 2009). PBIAS

is expected to be 0.0, with low magnitude values indicating

accurate simulations, positive values indicating underestima-

tion, and negative values indicating overestimation (Moriasi

et al., 2007). According to Moriasi et al. (2007), a hydrologi-

cal model with PBIAS values in the range ±25 % can be con-

sidered to be acceptable. Furthermore, a temporal evaluation

of flow hydrographs was carried out by plotting the monthly

simulated vs. observed discharge to ascertain visually if the

models were able to capture the magnitude, seasonality, and

interannual variability of discharge.

Lastly, we evaluated the models ability to predict dis-

charge above specific thresholds. This evaluation step is of

critical importance when considering operational water man-

agement requirements such as water allocation and reservoir

operation which rely on monthly river discharge. To achieve

this, we adopted the critical success index (CSI) as the metric

to evaluate the ability of each model to simulate discharge at

20th and 80th percentiles (i.e., discharge at 80th and 20th per-

cent exceedance, respectively). CSI is calculated from a two-

dimensional contingency table defining the events in which

observed and simulated discharges exceed a given thresh-

old (Thiemig et al., 2015). We used the 20th and 80th per-

centiles to assess the ability of the models to simulate both

low and high flows, respectively. The contingency table (Ta-

ble 4) is a performance measure used in summarizing all

possible forecast–observation combinations such as hits (H ;

event forecasted and observed), misses (M; event observed

but not forecasted), false alarms (FA; event forecasted but

not observed), and correct negatives (CN; event neither fore-

casted nor observed). The ideal value for CSI is 100 % and

the metric is calculated as follows:

CSI =
H

H + M + FA
× 100. (1)

Table 4. Contingency table for 80th percentile river discharge.

Observed discharge

Yes No

Simulated discharge
Yes Hits (H ) False alarms (FA)

No Misses (M) Correct negatives

2.5 Evaluating gridded ET

We also adopted a multi-step approach to evaluate the

performance of ET products by assessing the annual ET–

precipitation ratio, evaluating the statistical performance of

ET products against long-term ETWB and the ability of the

products to capture monthly ET variability.

In the first step, the annual ET–precipitation ratio was

calculated to compare with the ratio obtained using ETWB

method. The ET–precipitation ratio can also provide an es-

timate of the amount of water available in each basin af-

ter evapotranspiration losses. In the second step, different

statistical metrics were used to assess the performance of

the ET products using the monthly ETWB as a reference

(Andam-Akorful et al., 2015; Koukoula et al., 2020). The

monthly ETBW was calculated using the basin water balance

equation as follows:

ETWB = P − Q − 1S, (2)

where P is average monthly precipitation over the

basin (mm), Q is river discharge (mm), and 1S is the ter-

restrial water storage change (TWSC) (mm). Unlike sev-

eral studies that have evaluated ET products on an annual

timescale, this study adopts a monthly sample. As such, the

TWSC component (1S) in Eq. (2) that is often neglected

when estimating ETWB over several years (≥ 10 years) could

not be overlooked. Due to the likely impact of anthropogenic

activities such as reservoir operation, water withdrawal, and

monthly rainfall variability on TWSC, values derived at

monthly timescales are important. TWSC data used in this

study were the mean of three different GRACE mascon so-

lutions produced by different processing centers highlighted

earlier.

Due to its coarse spatial resolution, it has been argued

that GRACE is not sensitive at detecting changes in monthly

TWSC in small-size basins ≤ 50 000 km2 (Rodell et al.,

2015). Based on this claim, it might be argued that GRACE

data may not be applicable in this study considering that most

of the basins are below this threshold except the Oubangui

(499 000 km2). However, several studies (Liu, 2018; Bianca-

maria et al., 2019; Oussou et al., 2022; Xie et al., 2022) have

demonstrated that GRACE can provide acceptable TWSC es-

timates for basins that are smaller than this threshold. To fur-

ther minimize errors and uncertainty in the GRACE-derived

TWSC in our smaller-size basins, we re-gridded the GRACE

mascon solutions from JPL and NASA to a spatial resolution

Hydrol. Earth Syst. Sci., 26, 5899–5916, 2022 https://doi.org/10.5194/hess-26-5899-2022
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Figure 2. Flowchart outlining the steps used in evaluating the WRR and ET products (the blue dotted line in the flow chart separates

evaluation of WRR from ET products).

of 0.25◦ which is the same spatial resolution for the mas-

con solutions from CSR. We then proceeded to extract and

average the time series of all coincident GRACE grid cells

for each basin from the three different mascon solutions with

the same spatial resolution. Gaps in the time series were in-

filled using the linear function in Python. Finally, we calcu-

lated the ensemble mean of the three solutions to represent

GRACE-derived TWSC estimates for each basin. To esti-

mate changes in monthly TWSC, we calculated the differ-

ence between consecutive GRACE measurements for each

basin, divided by the time between measurements, using the

following equation:

1S =
(

S[n] − S[n−1]

)

/dt, (3)

where 1S represents the TWSC (mm), n is the measurement

number, and dt is the time difference between two consecu-

tive GRACE measurements (months).

Lastly, temporal evaluation of the products was carried out

by plotting the time series of all ET products against ETWB

to visually establish if the gridded ET products were able to

capture the magnitude, seasonality, and interannual variabil-

ity of ET across the basins. Figure 2 shows a flowchart outlin-

ing the steps used in evaluating both WRR and ET products

in this study.

3 Results

3.1 Water resources reanalysis products

3.1.1 Hydrological performance

A multi-objective approach using different statistical metrics

(NSE, KGE, and PBIAS) was used to evaluate discharge es-

timates from WRR products. The performance of the models

in simulating discharge is shown in Fig. 3. Using the NSE as

a performance metric, results show that FLDAS-Noah pro-

duced positive scores in all the basins (0.15–0.48). Terra,

AWRAL, and Lisflood produced positive scores (0.01–0.75)

in seven, six, and four basins, respectively. SURFEX model

produced positive scores in three basins, ORCHIDEE, HT-

ESSEL, Watergap, and the ensemble mean produced posi-

tive scores in two basins each, and PCR-GLOBW produced

negative scores in all the basins (Fig. 3a).

KGE results show that FLDAS-Noah also produced posi-

tive scores (0.11–0.44) in all basins, followed by AWRAL,

Lisflood, and Terra with positive scores in six, five, and

four basins, respectively (Fig. 3b). SURFEX and Watergap

produced positive scores in three basins while ORCHIDEE

and HTESSEL produced positive scores (0.31–0.76) in two

basins. The ensemble mean produced positive scores (0.09–

0.42) in three basins while PCRGLOBW produced the low-

est KGE scores (Fig. 3b).

Positive and negative PBIAS values were obtained in the

different basins. Negative values indicate that the model

overestimated discharge volumes compared to observed dis-

charge while positive values indicate the opposite. FLDAS-

Noah, Terra, and AWRAL produced acceptable PBIAS

scores (±25 %) in three basins, ORCHIDEE and Watergap

produced similar scores in two basins and HTESSEL in one

basin (Fig. 3c). The rest of the models including the ensem-

ble mean either grossly overestimated or underestimated dis-

charge volumes in all the basins.
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Figure 3. Statistical evaluation of the models using (a) NSE, (b) KGE, and (c) PBIAS. Red and orange colors represent poor model perfor-

mance in (a)–(c); however, the acceptable PBIAS range in (c) is ±25 %. Ensemble refers to the mean of WRR from the earthH2Observe.

3.1.2 Temporal evaluation

The ability of the models to capture discharge variability was

analyzed by comparing the simulated vs. observed discharge.

Results show that most of the models were able to capture

the seasonal discharge variability including peak and low

flows (Fig. 4). However, PCR-GLOBW systematically over-

estimated low flows and underestimated high flows across all

basins. In the Oubangui Basin, all models were able to cap-

ture the seasonal variability but consistently underestimated

peak flows, except FLDAS-Noah and Terra models, which

both overestimated peak flows (Fig. 4). For example, mea-

sured peak discharge in the river exceeds 5000 m3 s−1, but

all models except FLDAS-Noah and Terra simulated it to be

less than 2000 m3 s−1 (Fig. 4).

3.1.3 Critical success index

Figure 5 shows the performance of the models in simulat-

ing the 80th and 20th percentiles monthly discharge. For the

80th percentile flows, results show that FLDAS-Noah and

Terra produced CSI scores above 50 % in all basins, fol-

lowed by Lisflood and AWRAL in seven and six basins,

respectively, while Surfex and Watergap produced similar

scores in four basins each (Fig. 5a). For the 20th percentile

flows, only FLDAS-Noah produced CSI scores above 50 %

in four basins while Lisflood produced similar scores in two

basins. The performance of the other models in simulating

the 80th percentile flow shows a large spread while most

models including the ensemble mean failed to simulate the

20th percentile flow across all the basins. Taking this to-

gether, results suggest that the models simulated high flows

better than the low flows with only FLDAS-Noah capable of

capturing both flow regimes in most basins (Fig. 5b).

3.2 Evapotranspiration products

Mean monthly precipitation and GRACE estimates obtained

by averaging the three different precipitation products and

GRACE mascon solutions processed by three different cen-
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Figure 4. Evaluation of temporal flow variability simulated by the different model.

Figure 5. Critical success index for 80th and 20th percentile of monthly flow across all basins.
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Figure 6. Annual evapotranspiration–precipitation ratio 2003–2012. WRR: water resources reanalysis and RS: remote sensing.

ters are available in the Supplement. The means of the dif-

ferent products used in order to reduce the uncertainty esti-

mates from a single source are used. The mean precipitation

and GRACE estimates were used in this study to evaluate the

performance of the different evapotranspiration products in

this study.

3.2.1 Evapotranspiration–precipitation ratio

Figure 6 shows the annual ET–precipitation ratio for

all basins. It can be observed that average annual ET–

precipitation ratio ranges between (0.56–0.77) for WRR

and (0.53–0.83) for satellite-based products over the pe-

riod 2003–2012 across all basins. WaterGap produced the

highest ratio (0.46–0.99) among WRR models, SSEBop pro-

duced the highest ratio (0.54–0.99), and MOD16A2 pro-

duced the lowest ratio (0.43–0.67) among the satellite-based

products (Fig. 6). Results show that the evaporation ratios

from the different ET estimates were mostly in the same or-

der of magnitude with the ratio from ETWB across all the

basins except for WaterGap, SSEBop, MOD16A2, and CR–

ET which produced values which were beyond this range

(Fig. 6).

3.2.2 Basin-wide water balance estimates

Figure 7 shows the results of the statistical metrics used

in evaluating the ET estimates using monthly ETWB

as reference. Considering bias as a performance met-

ric, AWARL, FLDAS-Noah, and Terra produced the low-

est bias scores among WRR products while PMLV2,

Terra, and GLEAM3.5a and 3.5b produced the lowest

bias scores among the satellite-based products (Fig. 7a

and d). Most WRR products underestimated ET and simi-

larly most satellite-based products also systematically under-

estimated ET among the satellite-based products while the

rest of the products produced mixed results (Fig. 7a and d).

However, SSEBop systematically overestimated ET in all the

basins while MOD16A2 grossly underestimated this variable

in all but one basin with respect to monthly ETWB (Fig. 7d).

FLDAS-Noah and Terra produced the lowest RMSE

(14–23 mm per month) among the WRR products while

GLEAM3.5a and b and PMLV1 and 2 produced the low-

est RMSE (13–23 mm per month) among the satellite-based

products (Fig. 7b and e). The rest of the products both WRR

and satellite-based produced substantially higher RMSE

scores (Fig. 7b and e). Among WRR products, only FLDAS-

Noah and Terra produced slightly higher Pearson correla-

tion scores across most basins (Fig. 7c). On the other hand,

most satellite-based products produced high Pearson cor-

relation scores (≥ 0.50) in all basins except PMLV2 and

SSEBop which both produced low scores (< 0.50) in four

and six basins, respectively (Fig. 7f). ET estimates produced

from complimentary relationship (CR–ET) performed poorly

across most basins.

3.2.3 Monthly ET variability

Figures 8 and 9 show the seasonal cycle of ETWB against

both WRR products and satellite-based ET estimates. It can

be observed that most products were able to replicate the sea-

sonal ET cycle across all the basins (Figs. 8 and 9). Water-

gap systematically overestimated ET estimates across the all

the basins among all the WRR products (Fig. 8). SSEBop

overestimated ET in some basins among the satellite-based

products (Fig. 9). The performance of CR–ET follows that

of the rest of the products with cases of ET estimate over-

and underestimation in some basins.

4 Discussion

The overarching goal of this paper was to assess the perfor-

mance of gridded WRR and ET products and to estimate the

relative uncertainty in monthly basin-wide evapotranspira-

tion (ETWB) estimates. Below we provide a discussion and
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Figure 7. Bias, RMSE, and Pearson correlation coefficient between monthly ETWB and different ET products (a–c: WRR and d–f: remote

sensing products).

implications of our results in water security assessment in

poorly gauged basins.

4.1 Water resources reanalysis

The performance of WRR products was assessed through

commonly used model evaluation metrics, discharge vari-

ability, and verification skill scores (critical success index)

using observed river discharge data. Our results show strong

differences in the performance of the different models in

simulating river discharge across the basins. FLDAS-Noah

model produced positive NSE and KGE values in all basins

and PBIAS values within the acceptable range (±25 %)

in three basins. Temporal evaluation of the WRR products

showed that FLDAS-Noah, Terra, AWRAL, and Lisflood

were able to capture the seasonal variability in discharge as

demonstrated by high KGE scores. Indeed, high KGE values

suggest that some models were able to capture the temporal

dynamics (strong correlation), and low bias scores indicate

that the variability errors between the observed discharge and

simulation were also low (Gupta et al., 2009). Nevertheless,

Terra consistently overestimated peak flows in all the basins.

Apart from Noah, which is an LSM used in FLDAS, most

GHMs used in earthH2Observe Tier 1 product performed

better than the LSMs, which is consistent with results from

other studies (Lakew et al., 2020). The strong performance of

GHMs compared to LSMs can be attributed to the differences

in the model structure and parametrization schemes between

LSMs and GHMs (Gründemann et al., 2018; Koukoula et al.,

2020). For example, some GHMs such as Watergap are able

to simulate lakes and reservoirs and water withdrawal while

LSMs can only simulate natural processes. Such differences

in model structure can significantly influence discharge vol-

umes simulated by both types of models (Gründemann et al.,

2018). Although PCRGLOBW is a GHM, it produced sub-

stantially low performance compared to the LSMs, which is

consistent with results from other studies in the region (Grün-

demann et al., 2018; Lakew et al., 2020). This suggests that
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Figure 8. Seasonal cycle of ET estimates from WRR and basin-wide water balance evapotranspiration. ETWB represents monthly evapo-

transpiration estimated by the water balance method while the rest are derived from LSMs and GHMs.

PCRGLOBW model may not be suitable for assessing water

security in the region.

The ability of the models to simulate flow thresholds was

evaluated using the CSI. Results show that FLDAS-Noah,

Terra, AWRAL, and Lisflood were able to capture more than

50% of 80th percentile monthly flow in most basins. We also

noted that apart from FLDAS-Noah, the rest of the GHMs

performed better than the LSMs from eartH2Observe in their

ability to capture the 80th percentile monthly flows across the

basins while only FLDAS-Noah was able to capture 20th per-

centile flows in three basins. The performance of FLDAS-

Noah compared to other models can be attributed to the fact

that it was specially designed and optimized to produce phys-

ically meaningful variables for monitoring food and water se-

curity in data-scarce regions in Africa (McNally et al., 2017).

Furthermore, FLDAS-Noah and Terra, with spatial resolu-

tions of 0.1 and 0.041◦, respectively, perform better than

other models, which may be attributed to their higher spatial

resolutions compared to other models with a coarser resolu-

tion (0.5◦). In fact, Gründemann et al. (2018), reported that

WRR products with higher spatial resolution perform better

than products with coarser resolution in their ability to sim-

ulate discharge. The performance of FLDAS-Noah can also

be attributed to the fact the FLDAS is driven by a combi-

nation of different precipitation products, thereby reducing

the uncertainty in the input data, while earth2oberve Tier 1

products are driven by one data source (WFDEI). This in-

creases the uncertainty in the input data, which is propagated

to the model outputs. Our results also showed that Lisflood

performed better than most of the other earth2oberve mod-

els, and this may be attributed to the fact that Lisflood has

been extensively used in research and operational settings in

Africa (Thiemig et al., 2015; Smith et al., 2020). As such,

the model parameters may have been better constrained in

the region than other models from eartH2Observe. Taking

this together, results from this study highlight the importance

of evaluating outputs from WRR products in representative

basins before applying them in studies that may have wider
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Figure 9. Seasonal cycle of ET estimates from remote sensing-based products and basin-wide water balance evapotranspiration.

policy and financial implications in poorly gauged basins.

Our results suggest a need to enhance the spatial resolution

of WRR products and for the products to be driven by input

data from multiple sources to reduce the uncertainties in the

input data.

4.2 Evapotranspiration products

The annual ET–precipitation ratio produced by WRR and

satelitte-based ET products are within the range estimated

for the global land regions (Rodell et al., 2015), with the only

exceptions being WaterGap, SSEBop, MOD16A2, and CR–

ET, with values beyond this range. This suggests that ET es-

timates from both sources performed well in this aspect. The

annual ET–precipitation ratios obtained in this study show

that annual ET does not exceed annual precipitation in most

basins during the period under evaluation, suggesting the

availability of sufficient water resources in each basin.

Considering all the ET evaluation criteria and comparing

between estimates from WRR and satellite-based products,

FLDAS-Noah, Terra, GLEAM3.5a and 3.5b, and PMLV2

appear to outperform the rest of products even though

GLEAM products slightly underestimated ET in all the

basins. Conversely, WaterGap, SSEBop, and MOD16A2 per-

formed poorly and may not be suitable for water security

assessment in the region. Our results are generally consis-

tent with those from other studies indicating that GLEAM

and MODIS16A2 underestimate evapotranspiration, while

SSEBop overestimates this variable in most parts of Africa

(Weerasinghe et al., 2020; Adeyeri and Ishola, 2021; McNa-

mara et al., 2021). Given that ET estimates from FLDAS-

Noah are produced together with other water balance com-

ponents (runoff, soil moisture, and baseflow), outputs from

this model may be recommended for water security assess-

ment in the region because of water balance closure. Our

results also revealed that the performance of satellite-based

ET products is not influenced by spatial resolution, which is

consistent with results from previous studies (Weerasinghe

et al., 2020; Jiang and Liu, 2021). For example, Gleam prod-

ucts with a spatial resolution of 0.25◦ outperformed products
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such as MODIS16A2 and SSEBop with higher spatial reso-

lutions. Conversely, ET estimates from WRR appear to be in-

fluenced by spatial resolution considering that FLDAS-Noah

and Terra with higher spatial resolutions outperformed other

products with coarser resolutions.

Although all the products were able to capture the tem-

poral dynamics of ET across all the basins, there were sub-

stantial discrepancies in the magnitude of monthly ET from

each model. This finding is consistent with results from other

studies showing strong differences in ET estimates produced

by different models (Weerasinghe et al., 2020; Adeyeri and

Ishola, 2021). The discrepancies in monthly ET estimates

from the models may be attributed to differences in model

structure, parameters, and uncertainties in the input data used

in driving the models. This is also in line with findings

from another study in West Africa highlighting the impact

of model parameters and input data uncertainty on ET es-

timates (Jung et al., 2019). Considering the aforementioned

factors, it may be difficult to expect the products to produce

similar results.

5 Conclusions

The objectives of this study were to assess the performance

of water resources reanalysis and evapotranspiration prod-

ucts across eight basins in Africa. It should be noted the eval-

uation of the performance of WRR and ET products in this

study did not explicitly consider the influence the models

structure, parameters, and input data on their performance.

However, we do acknowledge that these factors could have

significant impact on the performance of the different mod-

els evaluated.

The evaluation of WRR products for discharge simula-

tion shows varying strengths and weaknesses for the different

models. Some models were able to capture the discharge dy-

namics in the basins while others could not adequately cap-

ture this pattern. Differences in the model performance can

be attributed to differences in model structure, parameters,

input data used in driving the models, and the spatial resolu-

tion of the WRR products. Apart from FLDAS-Noah, which

is a land surface model (LSM), our evaluation results show

that global hydrological models (GHMs) performed better

than LSMs except PCRGLOBW.

Evaluation of gridded ET products also revealed varying

strengths and weaknesses for the different products. Based

on the different evaluation criteria (bias, RMSE, Pearson cor-

relation coefficient, and temporal ET variability), FLDAS-

Noah appears to outperform most of other ET estimates and

may therefore be recommended for water security assess-

ment in the region. More so because of water balance clo-

sure and the availability of other water balance components

(runoff, soil moisture, and baseflow). Our results also suggest

that the performance of satellite-based ET products is not in-

fluenced by spatial resolution, while differences in ET esti-

mates may be attributed to differences in model structure, pa-

rameters, and the input data used to drive each ET model. On

the contrary, spatial resolution appears to have a significant

impact on the performance of WRR in simulating ET esti-

mates.

Results from this study suggest that WRR and ET products

may be used for water security assessment in poorly gauged

basins. However, it is imperative to evaluate the performance

of these products in representative gauged basins before ap-

plying them in poorly gauged basins. This is because apply-

ing the products in poorly gauged basins without evaluating

their performance may lead to poor water management de-

cisions with wider policy and financial implications. There

is also a need for WRR and ET products to be driven by in-

put data from multiple sources to reduce uncertainties in the

input data. Furthermore, the spatial resolution of WRR prod-

ucts needs to be enhanced given that models with higher spa-

tial resolutions outperformed those with coarser resolutions.

Results from this study may be used by the products devel-

opers to improve on the quality of future WRR and ET prod-

ucts.
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