474 research outputs found

    The Waiting Game: A Primary Care Intervention to Improve Access to Specialist Care to Patients with Osteoarthritis

    Get PDF
    Osteoarthritis (OA) commonly presents in the knee, contributing to pain and impairment in those affected. Given appropriate candidacy, surgical treatment for end-stage knee OA such as total knee replacement (TKR) and high tibial osteotomy (HTO) are highly successful with negligible risk. Just as the population has aged over the past decade, so too has the demand for surgical treatment of OA increasing wait times across Canada. Cipriano et al. identified that wait times for TKR in Ontario are longer than clinically appropriate. Several North American studies have demonstrated that general practitioner referrals to specialists do not result in subsequent surgery. Targeting increasing the proportion of referrals that result in a surgical booking has the potential to decrease the wait for initial consult, an important piece of the wait time continuum for knee OA

    Stabilization of Pd3−xIn1+x polymorphs with Pd-like crystal structure and their superior performance as catalysts for semi-hydrogenation of alkynes

    Get PDF
    Selective hydrogenation (semi-hydrogenation) reactions of alkynes rely on Pd-based catalysts to provide the correct pathway to favour formation of double bonds and avoid full hydrogenation to single bonds. Here, we present the preparation and characterisation of "Pd3In"/TiO2 nanocatalysts, which show improved activity and selectivity compared to pure Pd catalysts, towards the liquid phase semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE), a fundamental step in the preparation of pharmaceuticals, and other industrially produced substances, as well as a model reaction for the semi-hydrogenation of alkynes. For both the supported and unsupported "Pd3In" alloys (later redefined as Pd3-xIn1+x), we stabilised two new cubic polymorphs with a Pd-like structure, instead of the tetragonal structure as reported so far in the literature. The stabilisation of these new polymorphs was made possible by using a solution-based synthesis and, thanks to the use of different solvents, the reaction was 2 carried out at different temperatures and the Pd/In ratio could be tuned. The same synthetic approach was adapted to prepare two "Pd3In"/TiO2 catalysts by adding the TiO2 support to the reaction mixture, in a practical one-step, one-pot reaction. HREM and X-Ray maps show that the cubic crystal structure of "Pd3In" is maintained when prepared in the presence of the support, however, the support seems to influence the Pd/In ratio

    Fasting and nutrient-stimulated plasma peptide-YY levels are elevated in critical illness and associated with feed intolerance: an observational, controlled study

    Get PDF
    INTRODUCTION: Delayed gastric emptying and feed intolerance occur frequently in the critically ill. In these patients, gastric motor responses to nutrients are disturbed. Peptide YY (PYY) slows gastric emptying. The aim of this study was to determine fasting and nutrient-stimulated plasma PYY concentrations and their relationship to cholecystokinin (CCK) in critically ill patients. METHODS: Studies were performed in 19 unselected mechanically ventilated critically ill patients (12 males; 48 ± 7 years old) in a randomised, single-blind fashion. Subjects received a 60-minute duodenal infusion of Ensure(® )at either 1 or 2 kcal/minute. Blood samples were collected at baseline and at 20, 40, 60, and 180 minutes following commencement of the nutrient infusion for the measurement of plasma PYY and CCK concentrations (using radioimmunoassay). Patient data were compared to 24 healthy subjects (17 males; 43 ± 2 years old). RESULTS: Fasting PYY concentration was higher in patients (P < 0.05), particularly in those with feed intolerance (P < 0.05). Plasma PYY concentrations were higher in patients during nutrient infusion (area under the curve [AUC] at 1 kcal/minute: 2,265 ± 718 versus 1,125 ± 138 pmol/l.min, P < 0.05; at 2 kcal/minute: 2,276 ± 303 versus 1,378 ± 210 pmol/l.min, P = 0.01) compared to healthy subjects. The magnitude of PYY elevation was greater in patients during the 1 kcal/minute infusion (AUC: 441 ± 153 versus 186 ± 58 pmol/l.min, P < 0.05), but not the 2 kcal/minute infusion. Fasting and nutrient-stimulated plasma CCK concentrations were higher in patients (P < 0.05). There was a relationship between plasma PYY and CCK concentrations during fasting (r = 0.52, P < 0.05) and nutrient infusion (r = 0.98, P < 0.0001). CONCLUSION: In critical illness, both fasting and nutrient-stimulated plasma PYY concentrations are elevated, particularly in patients with feed intolerance, in conjunction with increased CCK concentrations

    The relationship between gastric emptying, plasma cholecystokinin, and peptide YY in critically ill patients

    Get PDF
    © 2007 Nguyen et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background Cholecystokinin (CCK) and peptide YY (PYY) are released in response to intestinal nutrients and play an important physiological role in regulation of gastric emptying (GE). Plasma CCK and PYY concentrations are elevated in critically ill patients, particularly in those with a history of feed intolerance. This study aimed to evaluate the relationship between CCK and PYY concentrations and GE in critical illness. Methods GE of 100 mL of Ensure® meal (106 kcal, 21% fat) was measured using a 13C-octanoate breath test in 39 mechanically ventilated, critically ill patients (24 males; 55.8 ± 2.7 years old). Breath samples for 13CO2 levels were collected over the course of 4 hours, and the GE coefficient (GEC) (normal = 3.2 to 3.8) was calculated. Measurements of plasma CCK, PYY, and glucose concentrations were obtained immediately before and at 60 and 120 minutes after administration of Ensure. Results GE was delayed in 64% (25/39) of the patients. Baseline plasma CCK (8.5 ± 1.0 versus 6.1 ± 0.4 pmol/L; P = 0.045) and PYY (22.8 ± 2.2 versus 15.6 ± 1.3 pmol/L; P = 0.03) concentrations were higher in patients with delayed GE and were inversely correlated with GEC (CCK: r = -0.33, P = 0.04, and PYY: r = -0.36, P = 0.02). After gastric Ensure, while both plasma CCK (P = 0.03) and PYY (P = 0.02) concentrations were higher in patients with delayed GE, there was a direct relationship between the rise in plasma CCK (r = 0.40, P = 0.01) and PYY (r = 0.42, P < 0.01) from baseline at 60 minutes after the meal and the GEC. Conclusion In critical illness, there is a complex interaction between plasma CCK, PYY, and GE. Whilst plasma CCK and PYY correlated moderately with impaired GE, the pathogenetic role of these gut hormones in delayed GE requires further evaluation with specific antagonists.Nam Q Nguyen, Robert J Fraser, Laura K Bryant, Marianne J Chapman, Judith Wishart, Richard H Holloway, Ross Butler, and Michael Horowit

    Enhancement of Immune Response Against Bordetella spp. by Disrupting Immunomodulation

    Get PDF
    Well-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens

    Hypoxic cancer–associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling

    Get PDF
    Intratumoral hypoxia causes the formation of dysfunctional blood vessels, which contribute to tumor metastasis and reduce the efficacy of therapeutic treatments. Blood vessels are embedded in the tumor stroma of which cancer-associated fibroblasts (CAFs) constitute a prominent cellular component. We found that hypoxic human mammary CAFs promoted angiogenesis in CAF-endothelial cell cocultures in vitro. Mass spectrometry–based proteomic analysis of the CAF secretome unraveled that hypoxic CAFs contributed to blood vessel abnormalities by altering their secretion of various pro- and anti-angiogenic factors. Hypoxia induced pronounced remodeling of the CAF proteome, including proteins that have not been previously related to this process. Among those, the uncharacterized protein NCBP2-AS2 that we renamed HIAR (hypoxia-induced angiogenesis regulator) was the protein most increased in abundance in hypoxic CAFs. Silencing of HIAR abrogated the pro-angiogenic and pro-migratory function of hypoxic CAFs by decreasing secretion of the pro-angiogenic factor VEGFA and consequently reducing VEGF/VEGFR downstream signaling in the endothelial cells. Our study has identified a regulator of angiogenesis and provides a map of hypoxia-induced molecular alterations in mammary CAFs

    Unique Clinical and Pathological Features in HLA-DRB1*0401–restricted MBP 111–129–specific Humanized TCR Transgenic Mice

    Get PDF
    Amino acid residues 111–129 represent an immunodominant epitope of myelin basic protein (MBP) in humans with human leukocyte antigen (HLA)-DRB1*0401 allele(s). The MBP 111–129–specific T cell clone MS2-3C8 was repeatedly isolated from a patient with multiple sclerosis (MS), suggesting an involvement of MS2-3C8 T cells in the pathogenesis. To address the pathogenic potential of the MS2-3C8 T cell clone, we generated transgenic (Tg) mice expressing its T cell receptor and restriction element, HLA-DRB1*0401, to examine the pathogenic characteristics of MS2-3C8 Tg T cells by adoptive transfer into HLA-DRB1*0401 Tg mice. In addition to the ascending paralysis typical of experimental autoimmune encephalomyelitis, mice displayed dysphagia due to restriction in jaw and tongue movements and abnormal gait. In accordance with the clinical phenotype, infiltrates of MS2-3C8 Tg T cells and inflammatory lesions were predominantly located in the brainstem and the cranial nerve roots in addition to the spinal cord and spinal nerve roots. Together, these data suggest a pathogenic role of MBP-specific T cells in inflammatory demyelination within the brainstem and cranial nerve roots during the progression of MS. This notion may help to explain the clinical and pathological heterogeneity of MS

    Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks

    Get PDF
    Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability
    • …
    corecore