2,088 research outputs found

    Differential regulation of bladder pain and voiding function by sensory afferent populations revealed by selective optogenetic activation

    Get PDF
    Bladder-innervating primary sensory neurons mediate reflex-driven bladder function under normal conditions, and contribute to debilitating bladder pain and/or overactivity in pathological states. The goal of this study was to examine the respective roles of defined subtypes of afferent neurons in bladder sensation and function in vivo via direct optogenetic activation. To accomplish this goal, we generated transgenic lines that express a Channelrhodopsin-2-eYFP fusion protein (ChR2-eYFP) in two distinct populations of sensory neurons: TRPV1-lineage neurons (Trpv1Cre;Ai32, the majority of nociceptors) and Nav1.8+ neurons (Scn10aCre;Ai32, nociceptors and some mechanosensitive fibers). In spinal cord, eYFP+ fibers in Trpv1Cre;Ai32 mice were observed predominantly in dorsal horn (DH) laminae I-II, while in Scn10aCre;Ai32 mice they extended throughout the DH, including a dense projection to lamina X. Fiber density correlated with number of retrogradely-labeled eYFP+ dorsal root ganglion neurons (82.2% Scn10aCre;Ai32 vs. 62% Trpv1Cre;Ai32) and degree of DH excitatory synaptic transmission. Photostimulation of peripheral afferent terminals significantly increased visceromotor responses to noxious bladder distension (30–50 mmHg) in both transgenic lines, and to non-noxious distension (20 mmHg) in Scn10aCre;Ai32 mice. Depolarization of ChR2+ afferents in Scn10aCre;Ai32 mice produced low- and high-amplitude bladder contractions respectively in 53% and 27% of stimulation trials, and frequency of high-amplitude contractions increased to 60% after engagement of low threshold (LT) mechanoreceptors by bladder filling. In Trpv1Cre;Ai32 mice, low-amplitude contractions occurred in 27% of trials before bladder filling, which was pre-requisite for light-evoked high-amplitude contractions (observed in 53.3% of trials). Potential explanations for these observations include physiological differences in the thresholds of stimulated fibers and their connectivity to spinal circuits

    Optimisation of patch distribution strategies for AMR applications

    Get PDF
    As core counts increase in the world's most powerful supercomputers, applications are becoming limited not only by computational power, but also by data availability. In the race to exascale, efficient and effective communication policies are key to achieving optimal application performance. Applications using adaptive mesh refinement (AMR) trade off communication for computational load balancing, to enable the focused computation of specific areas of interest. This class of application is particularly susceptible to the communication performance of the underlying architectures, and are inherently difficult to scale efficiently. In this paper we present a study of the effect of patch distribution strategies on the scalability of an AMR code. We demonstrate the significance of patch placement on communication overheads, and by balancing the computation and communication costs of patches, we develop a scheme to optimise performance of a specific, industry-strength, benchmark application

    Pollen evidence of pleistocene and holocene vegetation on the Allegheny plateau, Maryland

    Full text link
    When the Wisconsin ice sheet stood at its maximum position, tundra vegetation bordered the ice sheet. In the eastern United States, tundra extended at least 300 km due south of the ice border at 2700 ft (800 m) elevation on the Allegheny plateau. Spruce and jack (and/or red) pine forest grew at lower elevations in Virginia. On the coastal plain, and farther south, in the piedmont of northern Georgia, jack pine dominated the forest vegetation over a large region.As the ice sheet receded, the vegetation underwent a series of changes. Coniferous forest was replaced by deciduous forest, beginning 13,600 B.P. in Georgia. The frequency of white pine began to increase in Virginia at about the same time, and the frequencies of deciduous trees, about 1000 yr later. On the Allegheny plateau, no change took place in the tundra vegetation until 12,700 B.P., when tundra was replaced by open, spruce woodland. Jack and/or red pine grew mixed with, or nearby, the spruce. Pollen from deciduous trees (mainly oak, ash, and hornbeam) reached the site in greater quantity than before. Possibly the increase indicates a change in prevailing wind direction.On the Allegheny plateau, 10,500 years ago, the boreal woodland was replaced by a mixed coniferus-deciduous forest which included white pine. At about the same time (or perhaps a thousand years later), a similar change occurred in Connecticut. At lower elevations in the Shenandoah Valley, spruce forests including white pine were replaced by oak and other hardwoods.In the early Holocene, at a time we unfortunately were not able to pinpoint by radiocarbon dating, deciduous forest began to grow on the Allegheny plateau. Later there was a series of changes in the composition of the forest. High frequencies of oak pollen occur throughout the sequence, with successive maxima of hemlock, beech, and finally, hickory. High percentages of chestnut pollen occur with a maximum approximately coincident with the maximum of beech. These changes are probably significant both from stratigraphic and paleoecologic points of view, and should be studied in greater detail at sites where radiocarbon dating will be possible. The early maximum of chestnut pollen is a major difference between the pollen sequence in the Alleghenies and southern and central New England, suggesting that this species was very slow to move northward, arriving in New England just 2000 B.P. as the result of migration, not climatic change.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33998/1/0000271.pd

    Human Grasp Assist Device With Exoskeleton

    Get PDF
    A grasp assist system includes a glove, actuator assembly, and controller. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. Phalange rings are positioned with respect to the digit. A flexible tendon is connected at one end to one of the rings and is routed through the remaining rings. An exoskeleton positioned with respect to the digit includes hinged interconnecting members each connected to a corresponding ring, and/or a single piece of slotted material. The actuator assembly is connected to another end of the tendon. The controller calculates a tensile force in response to the measured grasping force, and commands the tensile force from the actuator assembly to thereby pull on the tendon. The exoskeleton offloads some of the tensile force from the operator's finger to the glove

    Remote sensing for urban planning

    Get PDF
    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data

    Differences In Mechanics Between First And Second Drop Vertical Jump Landings

    Get PDF
    A drop jump and landing, followed by another maximal jump and landing, has been used when assessing injury risk utilizing the Landing Error Scoring System (LESS). Vertical ground reaction force (vGRF) and knee excursion are also commonly analyzed during a drop vertical jump. Previous studies have assessed initial drop vertical jump landing mechanics without assessing the second landing from the subsequent vertical jump. Additionally, analyzing landing mechanics based on subject jump height has not been examined for either landing 1 (L1) or landing (L2). The purpose of this study was to investigate whether there was a difference in LESS scores, vGRF, and knee excursion between the first and second landings of the drop vertical jump in all subjects and when divided into subgroups based on jump height.https://dune.une.edu/pt_studrrposter/1004/thumbnail.jp

    Groups of Galaxies in AEGIS: The 200 ksec Chandra Extended X-ray Source catalogue

    Full text link
    We present the discovery of seven X-ray emitting groups of galaxies selected as extended X-ray sources in the 200 ksec Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). In addition, we report on AGN activity associated to these systems. Using the DEEP2 Galaxy Redshift Survey coverage, we identify optical counterparts and determine velocity dispersions. In particular, we find three massive high-redshift groups at z>0.7, one of which is at z=1.13, the first X-ray detections of spectroscopically selected DEEP2 groups. We also present a first look at the the L_X-T, L_X-sigma, and sigma-T scaling relations for high-redshift massive groups. We find that the properties of these X-ray selected systems agree well with the scaling relations of similar systems at low redshift, although there are X-ray undetected groups in the DEEP2 catalogue with similar velocity dispersions. The other three X-ray groups with identified redshifts are associated with lower mass groups at z~0.07 and together form part of a large structure or "supergroup" in the southern portion of the AEGIS field. All of the low-redshift systems are centred on massive elliptical galaxies, and all of the high-redshift groups have likely central galaxies or galaxy pairs. All of the central group galaxies host X-ray point sources, radio sources, and/or show optical AGN emission. Particularly interesting examples of central AGN activity include a bent-double radio source plus X-ray point source at the center of a group at z=0.74, extended radio and double X-ray point sources associated to the central galaxy in the lowest-redshift group at z=0.066, and a bright green valley galaxy (part of a pair) in the z=1.13 group which shows optical AGN emission lines.Comment: accepted to MNRAS, 15 pages, 11 figures, for version with full resolution figures see http://www.ucolick.org/~tesla/aegis_groups.ps.g

    Selecting the geology filter wavelengths for the ExoMars Panoramic Camera Instrument

    Get PDF
    The Panoramic Camera (PanCam) instrument will provide surface remote sensing data for the ExoMars mission. A combination of wide-angle stereo, multispectral, and high resolution imagery will generate contextual geological information to help inform which scientific targets should be selected for drilling and analysis. One component of the PanCam dataset is narrowband multispectral imaging in the visible to near infrared, which utilises a dedicated set of 12 “geology” filters of predetermined wavelength and bandwidth to view the terrain, and provide information on composition and putative mineralogy. The centre wavelengths and bandwidths of these filters were optimised to account for the highly diverse mineralogical terrains the ExoMars rover will hopefully encounter. Six new alternative test filter sets were created, each optimised for the detection of either: sulfates, phyllosilicates, ferric oxides, mafic silicates, iron absorptions, and minor hydration absorptions. These six filter sets were cross-tested using database mineral reflectance spectra and Mars analogue rock multispectral data to find the best performing filter set. Once selected, the bandwidths of this filter set were also optimised. The filter set optimised to ferric oxide minerals was able to most accurately represent rock multispectral data, as well as capture subtle spectral features of hydrated minerals, including sulfates, phyllosilicates, and carbonates. These filters differ from those used on past missions (e.g., Pathfinder, Mars Exploration Rover) and represent the next evolutionary stage in PanCam instrument development. When compared to past filter sets, the updated ExoMars filters capture rock and mineral spectral data more effectively, enhancing the ability of the ExoMars PanCam to detect lithological and compositional variation within an outcrop

    The Redshift Evolution of LCDM Halo Parameters: Concentration, Spin, and Shape

    Full text link
    We present a detailed study of the redshift evolution of dark matter halo structural parameters in a LambdaCDM cosmology. We study the mass and redshift dependence of the concentration, shape and spin parameter in Nbody simulations spanning masses from 10^{10} Msun/h to 10^{15} Msun/h and redshifts from 0 to 2. We present a series of fitting formulas that accurately describe the time evolution of the concentration-mass relation since z=2. Using arguments based on the spherical collapse model we study the behaviour of the scale length of the density profile during the assembly history of haloes, obtaining physical insights on the origin of the observed time evolution of the concentration mass relation. We also investigate the evolution with redshift of dark matter halo shape and its dependence on mass. Within the studied redshift range the relation between halo shape and mass can be well fitted by a power law. Finally we show that although for z=0 the spin parameter is practically mass independent, at increasing redshift it shows a increasing correlation with mass.Comment: 12 pages, 11 figures, accepted to MNRAS, minor changes to previous versio
    corecore