17 research outputs found

    Arachidonic acid, a clinically adverse mediator in the ovarian cancer microenvironment, impairs JAK-STAT signaling in macrophages by perturbing lipid raft structures

    No full text
    Survival of ovarian carcinoma is associated with the abundance of immunosuppressed CD163(high)CD206(high) tumor-associated macrophages (TAMs) and high levels of arachidonic acid (AA) in the tumor microenvironment. Here, we show that both associations are functionally linked. Transcriptional profiling revealed that high CD163 and CD206/MRC1 expression in TAMs is strongly associated with an inhibition of cytokine-triggered signaling, mirrored by an impaired transcriptional response to interferons and IL-6 in monocyte-derived macrophages by AA. This inhibition of pro-inflammatory signaling is caused by dysfunctions of the cognate receptors, indicated by the inhibition of JAK1, JAK2, STAT1, and STAT3 phosphorylation, and by the displacement of the interferon receptor IFNAR1, STAT1 and other immune-regulatory proteins from lipid rafts. AA exposure led to a dramatic accumulation of free AA in lipid rafts, which appears to be mechanistically crucial, as the inhibition of its incorporation into phospholipids did not affect the AA-mediated interference with STAT1 phosphorylation. Inhibition of interferon-triggered STAT1 phosphorylation by AA was reversed by water-soluble cholesterol, known to prevent the perturbation of lipid raft structure by AA. These findings suggest that the pharmacologic restoration of lipid raft functions in TAMs may contribute to the development new therapeutic approaches

    Targeted Genetic Disruption of Peroxisome Proliferator–Activated Receptor-δ and Colonic Tumorigenesis

    No full text
    Peroxisome proliferator–activated receptor-delta (PPAR-δ) is overexpressed in human colon cancer, but its contribution to colonic tumorigenesis is controversial. We generated a mouse model in which PPAR-δ was genetically disrupted in colonic epithelial cells by targeted deletion of exon 4. Elimination of colon-specific PPAR-δ expression was confirmed by real-time reverse transcription–polymerase chain reaction (real-time RT-PCR), immunoblotting, and activity assays. Mice with and without targeted PPAR-δ genetic disruption (10–11 mice per group) were tested for incidence of azoxymethane-induced colon tumors. The effects of targeted PPAR-δ deletion on vascular endothelial growth factor expression were determined by real-time RT-PCR. Targeted PPAR-δ genetic disruption inhibited colonic carcinogenesis: Mice with PPAR-δ(−/−) colons developed 98.5% fewer tumors than wild-type mice (PPAR-δ(−/−) vs wild-type, mean = 0.1 tumors per mouse vs 6.6 tumors per mouse, difference = 6.5 tumors per mouse, 95% confidence interval = 4.9 to 8.0 tumors per mouse, P < .001, two-sided test). Increased expression of vascular endothelial growth factor in colon tumors vs normal colon was suppressed by loss of PPAR-δ expression. These findings indicate that PPAR-δ has a crucial role in promoting colonic tumorigenesis

    Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells

    No full text
    Terminal deoxynucleotidyl transferase (TdT) is a template-independent DNA polymerase that catalyses the incorporation of deoxyribonucleotides into the 3′-hydroxyl end of DNA templates and is thought to increase junctional diversity of antigen receptor genes. TdT is expressed only on immature lymphocytes and acute lymphoblastic leukaemia cells and its transcriptional expression is tightly regulated. We had previously found that protein kinase C (PKC) activation down-regulates TdT expression. PKC-activation induces the synthesis of the Fos and Jun proteins, known as the major components of activation protein 1 (AP-1) transcriptional factor implicated in transcriptional control. Here we report the identification of several DNA–protein interactions within the TdT promoter region in non-TdT expressing human cells. Sequence analysis revealed the presence of a putative AP-1-like DNA-binding site, suggesting that AP-1 may play a relevant role in TdT transcriptional regulation. Using a different source of nuclear extracts and the AP-1–TdT motif as a probe we identified several DNA-protein retarded complexes in electrophoretic mobility shift assays. Super-band shifting analysis using an antibody against c-Jun protein confirmed that the main interaction is produced by a nuclear factor that belongs to the AP-1 family transcription factors. Our findings suggest that the TdT gene expression is down-regulated, at least in part, through AP-1-like transcription factors
    corecore