12 research outputs found

    Pharmacokinetic analysis of two different docetaxel dose levels in patients with non-small cell lung cancer treated with docetaxel as monotherapy or with concurrent radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous pharmacokinetic studies with docetaxel have mostly used 3-weekly (75 mg/m<sup>2 </sup>and 100 mg/m<sup>2</sup>) or weekly regimens (35–40 mg/m<sup>2</sup>). The pharmacokinetics and radiosensitizing efficacy of weekly 20 mg/m<sup>2 </sup>docetaxel, has however not been well characterized. We examined the pharmacokinetics of weekly docetaxel when administered with concurrent radiotherapy and compared the results with a 3-weekly 100 mg/m<sup>2 </sup>regimen.</p> <p>Methods</p> <p>Thirty-four patients with non small cell lung cancer (NSCLC) were included in this study, 19 receiving 100 mg/m<sup>2 </sup>docetaxel 3-weekly as single therapy, and 15 receiving 20 mg/m<sup>2 </sup>docetaxel weekly with concurrent radiotherapy. A newly developed HPLC method was used for measuring docetaxel levels, capable of quantifying docetaxel in plasma down to the nanomolar level.</p> <p>Results</p> <p>The HPLC method showed detectable concentrations of docetaxel in plasma even after 72 hours. In the present study we have demonstrated that median docetaxel plasma levels of 3 nM can be obtained 72 hours after a dose of 20 mg/m<sup>2</sup>.</p> <p>Conclusion</p> <p>The pharmacokinetics of docetaxel is characterized by great inter-individual variability and at some time points plasma concentrations for 20 mg/m<sup>2 </sup>and 100 mg/m<sup>2 </sup>docetaxel were overlapping. Extrapolation of these results indicates that radio sensitizing docetaxel concentrations may be present for as long as 1 week, thus supporting the use of 20 mg/m<sup>2 </sup>weekly docetaxel.</p

    High sensitivity assays for docetaxel and paclitaxel in plasma using solid-phase extraction and high-performance liquid chromatography with UV detection

    Get PDF
    BACKGROUND: The taxanes paclitaxel and docetaxel have traditionally been used in high doses every third week in the treatment of cancer. Lately there has been a trend towards giving weekly low doses to improve the therapeutic index. This article describes the development of high performance liquid chromatographic (HPLC) methods suitable for monitoring taxane levels in patients, focusing on patients receiving low-dose therapy. METHODS: Paclitaxel and docetaxel were extracted from human plasma by solid phase extraction, and detected by absorbance at 227 nm after separation by reversed phase high performance liquid chromatography. The methods were validated and their performance were tested using samples from patients receiving paclitaxel or docetaxel. RESULTS: The limits of quantitation were 1 nM for docetaxel and 1.2 nM for paclitaxel. For both compounds linearity was confirmed from the limit of quantitation up to 1000 nM in plasma. The recoveries ranged between 92% and 118% for docetaxel and between 76% and 104% for paclitaxel. Accuracy and precision were within international acceptance criteria, that is within Âą 15%, except at the limit of quantitation where values within Âą 20% are acceptable. Low-dose patients included in an on going clinical trial had a median docetaxel concentration of 2.8 nM at 72 hours post infusion. Patients receiving 100 mg/m(2 )of paclitaxel had a mean paclitaxel concentration of 21 nM 48 hours after the end of infusion. CONCLUSION: We have developed an HPLC method using UV detection capable of quantifying 1 nM of docetaxel in plasma samples. The method should be useful for pharmacokinetic determinations at all relevant doses of docetaxel. Using a similar methodology paclitaxel can be quantified down to a concentration of 1.2 nM in plasma with acceptable accuracy and precision. We further demonstrate that the previously reported negative influence of Cremophor EL on assay performance may be overcome by degradation of the detergent by incubation with lipase

    Assessing quality of life in a randomized clinical trial: Correcting for missing data

    Get PDF
    Background Health-related quality of life is a topic of current interest. This paper considers a randomized phase III study of radiation therapy with concurrent chemotherapy (docetaxel) versus radiation therapy alone in non-small cell lung cancer, stage III A/B. Longitudinal data on quality of life have been obtained through repeated administration of a multi-item questionnaire (EORTC QLQ-C30) developed by the European Organisation for Research and Treatment of Cancer. Missingness in the data is owing to patients having failed to complete the questionnaire at some of the scheduled filling-in times. Methods We have analysed a monotone (in terms of missingness) subset of the data as regards estimation of the mean score of a summary measure of self-reported quality of life in a hypothetical drop-out-free population at different points in time. Missingness is a difficult issue of great importance. We have therefore chosen to compare three different methods that are relatively easy to implement: the linear-increments method, the inverse-probability-weighting method and the Markov-process method. Single imputation has been applied in a supplementary analysis to fill in for all the non-consecutive missing score values prior to the execution of the estimation procedure. Results For the response in focus, the observed mean score at a certain time is larger than the estimated mean scores, which implies that the true mean score is easily overestimated unless the missingness is appropriately adjusted for. Comparison of the treatment arms shows a significant difference in mean score at the end of treatment. Conclusion Use of proper methodology developed for analysing data subject to missingness is necessary to reduce potential estimation bias. The quality of life of patients receiving radiation therapy with concurrent chemotherapy (docetaxel) appears somewhat worse than that of patients receiving radiation therapy alone in the period during which treatment is given. The conclusions are robust for the choice of statistical methods

    Assessing quality of life in a randomized clinical trial: Correcting for missing data

    No full text
    Abstract Background Health-related quality of life is a topic of current interest. This paper considers a randomized phase III study of radiation therapy with concurrent chemotherapy (docetaxel) versus radiation therapy alone in non-small cell lung cancer, stage III A/B. Longitudinal data on quality of life have been obtained through repeated administration of a multi-item questionnaire (EORTC QLQ-C30) developed by the European Organisation for Research and Treatment of Cancer. Missingness in the data is owing to patients having failed to complete the questionnaire at some of the scheduled filling-in times. Methods We have analysed a monotone (in terms of missingness) subset of the data as regards estimation of the mean score of a summary measure of self-reported quality of life in a hypothetical drop-out-free population at different points in time. Missingness is a difficult issue of great importance. We have therefore chosen to compare three different methods that are relatively easy to implement: the linear-increments method, the inverse-probability-weighting method and the Markov-process method. Single imputation has been applied in a supplementary analysis to fill in for all the non-consecutive missing score values prior to the execution of the estimation procedure. Results For the response in focus, the observed mean score at a certain time is larger than the estimated mean scores, which implies that the true mean score is easily overestimated unless the missingness is appropriately adjusted for. Comparison of the treatment arms shows a significant difference in mean score at the end of treatment. Conclusion Use of proper methodology developed for analysing data subject to missingness is necessary to reduce potential estimation bias. The quality of life of patients receiving radiation therapy with concurrent chemotherapy (docetaxel) appears somewhat worse than that of patients receiving radiation therapy alone in the period during which treatment is given. The conclusions are robust for the choice of statistical methods.</p

    Durable and dynamic hTERT immune responses following vaccination with the long-peptide cancer vaccine UV1 : long-term follow-up of three phase I clinical trials

    No full text
    Background Therapeutic cancer vaccines represent a promising approach to improve clinical outcomes with immune checkpoint inhibition. UV1 is a second generation telomerase-targeting therapeutic cancer vaccine being investigated across multiple indications. Although telomerase is a near-universal tumor target, different treatment combinations applied across indications may affect the induced immune response. Three phase I/IIa clinical trials covering malignant melanoma, non-small cell lung cancer, and prostate cancer have been completed, with patients in follow-up for up to 8 years. Methods 52 patients were enrolled across the three trials. UV1 was given as monotherapy in the lung cancer trial and concurrent with combined androgen blockade in the prostate cancer trial. In the melanoma study, patients initiated ipilimumab treatment 1 week after the first vaccine dose. Patients were followed for UV1-specific immune responses at frequent intervals during vaccination, and every 6 months for up to 8 years in a follow-up period. Phenotypic and functional characterizations were performed on patient-derived vaccine-specific T cell responses. Results In total, 78.4% of treated patients mounted a measurable vaccine-induced T cell response in blood. The immune responses in the malignant melanoma trial, where UV1 was combined with ipilimumab, occurred more rapidly and frequently than in the lung and prostate cancer trials. In several patients, immune responses peaked years after their last vaccination. An in-depth characterization of the immune responses revealed polyfunctional CD4+ T cells producing interferon-gamma and tumor necrosis factor-alpha on interaction with their antigen. Conclusion Long-term immunomonitoring of patients showed highly dynamic and persistent telomerase peptide-specific immune responses lasting up to 7.5 years after the initial vaccination, suggesting a plausible functional role of these T cells in long-term survivors. The superior immune response kinetics observed in the melanoma study substantiate the rationale for future combinatorial treatment strategies with UV1 vaccination and checkpoint inhibition for rapid and frequent induction of anti-telomerase immune responses in patients with cancer

    Randomized phase II trial comparing twice daily hyperfractionated with once daily hypofractionated thoracic radiotherapy in limited disease small cell lung cancer

    Get PDF
    BACKGROUND: Concurrent chemotherapy and thoracic radiotherapy (TRT) is recommended for limited disease small cell lung cancer (LD SCLC). Twice daily TRT is well documented, but not universally implemented - probably mainly due to inconvenience and concerns about toxicity. A schedule of three-week hypofractionated TRT is a commonly used alternative. This is the first randomized trial comparing twice daily and hypofractionated TRT in LD SCLC. MATERIAL AND METHODS: Patients received four courses of cisplatin/etoposide (PE) and were randomized to TRT of 42 Gy in 15 fractions (once daily, OD) or 45 Gy in 30 fractions (twice daily, BID) between the second and third PE course. Good responders received prophylactic cranial irradiation of 30 Gy in 15 fractions. RESULTS: 157 patients were enrolled between May 2005 and January 2011 (OD: n = 84, BID: n = 73). Median age was 63 years, 52% were men, 84% had performance status 0-1, 72% had stage III disease and 11% non-malignant pleural effusion. The treatment arms were well balanced. The response rates were similar (OD: 92%, BID: 88%; p = 0.41), but more BID patients achieved a complete response (OD: 13%, BID: 33%; p = 0.003). There was no difference in one-year progression-free survival (PFS) (OD: 45%, BID: 49%; p = 0.61) or median PFS (OD: 10.2 months, BID: 11.4 months; p = 0.93). The median overall survival in the BID arm was 6.3 months longer (OD: 18.8 months, BID: 25.1 months; p = 0.61). There were no differences in grade 3-4 esophagitis (OD: 31%, BID: 33%, p = 0.80) or pneumonitis (OD: 2%, BID: 3%, p = 1.0). Patients on the BID arm reported slightly more dysphagia at the end of the TRT. CONCLUSION: There was no difference in severe toxicity between the two TRT schedules. The twice daily schedule resulted in significantly more complete responses and a numerically longer median overall survival, but no firm conclusions about efficacy could be drawn from this phase II trial
    corecore