509 research outputs found

    Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers.

    Get PDF
    BackgroundBiofuel use is one of many means of addressing global change caused by anthropogenic release of fossil fuel carbon dioxide into Earth's atmosphere. To make a meaningful reduction in fossil fuel use, bioethanol must be produced from the entire plant rather than only its starch or sugars. Enzymes produced by fungi constitute a significant percentage of the cost of bioethanol production from non-starch (i.e., lignocellulosic) components of energy crops and agricultural residues. We, and others, have reasoned that fungi that naturally deconstruct plant walls may provide the best enzymes for bioconversion of energy crops.ResultsPreviously, we have reported on the isolation of 106 fungi from decaying leaves of Miscanthus and sugarcane (Appl Environ Microbiol 77:5490-504, 2011). Here, we thoroughly analyze 30 of these fungi including those most often found on decaying leaves and stems of these plants, as well as four fungi chosen because they are well-studied for their plant cell wall deconstructing enzymes, for wood decay, or for genetic regulation of plant cell wall deconstruction. We extend our analysis to assess not only their ability over an 8-week period to bioconvert Miscanthus cell walls but also their ability to secrete total protein, to secrete enzymes with the activities of xylanases, exocellulases, endocellulases, and beta-glucosidases, and to remove specific parts of Miscanthus cell walls, that is, glucan, xylan, arabinan, and lignin.ConclusionThis study of fungi that bioconvert energy crops is significant because 30 fungi were studied, because the fungi were isolated from decaying energy grasses, because enzyme activity and removal of plant cell wall components were recorded in addition to biomass conversion, and because the study period was 2 months. Each of these factors make our study the most thorough to date, and we discovered fungi that are significantly superior on all counts to the most widely used, industrial bioconversion fungus, Trichoderma reesei. Many of the best fungi that we found are in taxonomic groups that have not been exploited for industrial bioconversion and the cultures are available from the Centraalbureau voor Schimmelcultures in Utrecht, Netherlands, for all to use

    The impact of selective genotyping on the response to selection using single-step genomic best linear unbiased prediction

    Get PDF
    Across the majority livestock species, routinely collected genomic and pedigree information has been incorporated into evaluations using single-step methods. As a result, strategies that reduce genotyping costs without reducing the response to selection are important as they could have substantial economic impacts on breeding programs. Therefore, the objective of the current study was to investigate the impact of selectively genotyping selection candidates on the selection response using simulation. Populations were simulated to mimic the genome and population structure of a swine and cattle population undergoing selection on an index comprised of the estimated breeding values (EBV) for 2 genetically correlated quantitative traits. Ten generations were generated and genotyping began generation 7. Two phenotyping scenarios were simulated that assumed the first trait was recorded early in life on all individuals and the second trait was recorded on all versus a random subset of the individuals. The EBV were generated from a bivariate animal model. Multiple genotyping scenarios were generated that ranged from not genotyping any selection candidates, a proportion of the selection candidates based on either their index value or chosen at random, and genotyping all selection candidates. An interim index value was utilized to decide who to genotype for the selective genotype strategy. The interim value assumed only the first trait was observed and the only genotypic information available was on animals in previous generations. Within each genotyping scenario 25 replicates were generated. Within each genotyping scenario the mean response per generation and the degree to which EBV were inflated/deflated was calculated. Across both species and phenotyping strategies, the plateau of diminishing returns was observed when 60% of the selection candidates with the largest index values were genotyped. When randomly genotyping selection candidates, either 80 or 100% of the selection candidates needed to be genotyped for there not to be a reduction in the index response. Across both populations, no differences in the degree that EBV were inflated/deflated for either trait 1 or 2 were observed between nongenotyped and genotyped animals. The current study has shown that animals can be selectively genotyped in order to optimize the response to selection as a function of the cost to conduct a breeding program using single-step genomic best linear unbiased prediction

    Mitochondrial DNAs of Suillus: three fold size change in molecules that share a common gene order

    Full text link
    We constructed restriction-site and gene maps for mitochondrial DNAs from seven isolates of five species of Suillus (Boletaceae, Basidiomycotina). Each mitochondrial genome exists as a single circular chromosome, ranging in size from 36 to 121 kb. Comparisons within species and between two closely related species revealed that insertions and deletions are the major form of genome change, whereas most restriction sites are conserved. Among more distantly related species, size and restriction-site differences were too great to allow precise alignments of maps, but small clusters of putatively homologous restriction sites were found. Two mitochondrial gene orders exist in the five species. These orders differ only by the relative positions of the genes for ATPase subunit 9 and the small ribosomal RNA and are interconvertible by a single transposition. One of the two gene arrangements is shared by four species whose mitochondrial DNAs span the entire size range of 36 to 121 kb. The conservation of gene order in molecules that vary over three-fold in size and share few restriction sites demonstrates a low frequency of rearrangements relative to insertions, deletions, and base substitutions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46963/1/294_2004_Article_BF00365756.pd

    Epiparasitic plants specialized on arbuscular mycorrhizal fungi

    Get PDF
    Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature

    Passive dust collectors for assessing airborne microbial material

    Get PDF
    BackgroundSettled airborne dust is used as a surrogate for airborne exposure in studies that explore indoor microbes. In order to determine whether detecting differences in dust environments would depend on the sampler type, we compared different passive, settled dust sampling approaches with respect to displaying qualitative and quantitative aspects of the bacterial and fungal indoor microbiota.ResultsSettled dust sampling approaches-utilizing plastic petri dishes, TefTex material, and electrostatic dustfall collectors (EDCs)-were evaluated in indoor spaces in the USA and Finland and in an experimental chamber study. The microbial content was analyzed with quantitative PCR (qPCR) to quantify total bacterial and fungal biomass and through high-throughput sequencing to examine bacterial community composition. Bacterial composition and diversity were similar within a sampling environment regardless of the sampler type. The sampling environment was the single largest predictor of microbial community composition within a study, while sampler type was found to have much less predictive power. Quantitative analyses in indoor spaces indicated highest yields using a petri dish approach, followed by sampling with EDCs and TefTex. The highest correlations between duplicate samples were observed for EDC and petri dish approaches, indicating greater experimental repeatability for these sampler types. For the EDC samples, it became apparent that, due to the fibrous nature of the material, a rigorous extraction protocol is crucial to obtain optimal yields and stable, repeatable results.ConclusionsCorrelations between sampler types were strong both in compositional and quantitative terms, and thus, the particular choice of passive settled dust sampler is not likely to strongly alter the overall conclusion of a study that aims to characterize dust across different environments. Microbial cell abundances determined from settled dust varied with the use of different sampling approaches, and thus, consistency in the method is necessary to allow for absolute comparisons within and among studies. Considering practical aspects, petri dishes were found to be an inexpensive, simple, and feasible approach that showed the highest quantitative determinations under typical building conditions, though the choice of sampler will ultimately depend on study logistics and characteristics such as low- or high-exposure settings

    Bowen Ratio Energy Balance Measurement of Carbon Dioxide (CO2) Fluxes of No-Till and Conventional Tillage Agriculture in Lesotho

    Get PDF
    Global food demand requires that soils be used intensively for agriculture, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). Soil management practices can cause carbon to be either sequestered or emitted, with corresponding uncertain influence on atmospheric CO2 concentrations. The situation is further complicated by the lack of CO2 flux measurements for African subsistence farms. For widespread application in remote areas, a simple experimental methodology is desired. As a first step, the present study investigated the use of Bowen Ratio Energy Balance (BREB) instrumentation to measure the energy balance and CO2 fluxes of two contrasting crop management systems, till and no-till, in the lowlands within the mountains of Lesotho. Two BREB micrometeorological systems were established on 100-m by 100-m sites, both planted with maize (Zea mays) but under either conventional (plow, disk-disk) or no-till soil mangement systems. The results demonstrate that with careful maintenance of the instruments by appropriately trained local personnel, the BREB approach offers substantial benefits in measuring real time changes in agroecosystem CO2 flux. The periods where the two treatments could be compared indicated greater CO2 sequestration over the no-till treatments during both the growing and non-growing seasons

    Unimodality Problems in Ehrhart Theory

    Full text link
    Ehrhart theory is the study of sequences recording the number of integer points in non-negative integral dilates of rational polytopes. For a given lattice polytope, this sequence is encoded in a finite vector called the Ehrhart h∗h^*-vector. Ehrhart h∗h^*-vectors have connections to many areas of mathematics, including commutative algebra and enumerative combinatorics. In this survey we discuss what is known about unimodality for Ehrhart h∗h^*-vectors and highlight open questions and problems.Comment: Published in Recent Trends in Combinatorics, Beveridge, A., et al. (eds), Springer, 2016, pp 687-711, doi 10.1007/978-3-319-24298-9_27. This version updated October 2017 to correct an error in the original versio
    • …
    corecore