8 research outputs found

    Soil Penetration Resistance after One-Time Inversion Tillage: A Spatio-Temporal Analysis at the Field Scale

    Get PDF
    Conservation agriculture may lead to increased penetration resistance due to soil compaction. To loosen the topsoil and lower the compaction, one-time inversion tillage (OTIT) is a measure frequently used in conservation agriculture. However, the duration of the positive effects of this measure on penetration resistance is sparsely known. Therefore, the aim of this study was to analyze the spatio-temporal behavior of penetration resistance after OTIT as an indicator for soil compaction. A field subdivided into three differently tilled plots (conventional tillage with moldboard plough to 30 cm depth (CT), reduced tillage with chisel plough to 25 cm depth (RT1) and reduced tillage with disk harrow to 10 cm depth (RT2)) served as study area. In 2014, the entire field was tilled by moldboard plough and penetration resistance was recorded in the following 5 years. The results showed that OTIT reduced the penetration resistance in both RT-plots and led to an approximation in all three plots. However, after 18 (RT2) and 30 months (RT1), the differences in penetration resistance were higher (p < 0.01) in both RT-plots compared to CT. Consequently, OTIT can effectively remove the compacted layer developed in conservation agriculture. However, the lasting effect seems to be relatively shor

    Wheel Load and Wheel Pass Frequency as Indicators for Soil Compaction Risk: A Four-Year Analysis of Traffic Intensity at Field Scale

    No full text
    Avoiding soil compaction is one of the objectives to ensure sustainable agriculture. Subsoil compaction in particular can be irreversible. Frequent passages by (increasingly heavy) agricultural machinery are one trigger for compaction. The aim of this work is to map and analyze the extent of traffic intensity over four years. The analysis is made for complete seasons and individual operations. The traffic intensity is distinguished into areas with more than five wheel passes, more than 5 Mg and 3 Mg wheel load. From 2014 to 2018, 63 work processes on a field were recorded and the wheel load and wheel passes were modeled spatially with FiTraM. Between 82% (winter wheat) and 100% (sugar beet) of the total infield area is trafficked during a season. The sugar beet season has the highest intensities. High intensities of more than five wheel passes and more than 5 Mg wheel load occur mainly during harvests in the headland. At wheel load &ge;3 Mg, soil tillage also stresses the headland. In summary, no work process stays below one of the upper thresholds set. Based on the results, the importance of a soil-conserving management becomes obvious in order to secure the soil for agriculture in a sustainable way

    A Multi-Data Approach for Spatial Risk Assessment of Topsoil Compaction on Arable Sites

    No full text
    Soil compaction is a human-induced threat which negatively affects soil functions and is highly dependent on site-specific soil conditions and land use patterns. Proper management techniques are indispensable for sustainable soil protection to ensure its function in the long term. A number of concepts exist to develop risk maps on the basis of soil inherent susceptibility to compaction at a given soil moisture level (mostly field capacity). However, the real soil conditions, e.g., current soil moisture content at the time of field work and the real machinery load, are not taken into account. To bridge this gap, we present a multi-data approach for qualitative risk assessment, which combines spatially and temporally explicit data on soil, soil moisture, and land use information. The contributing components integrate daily probability distribution, including inter- and intra-annual variations in land use and weather. We combined soil susceptibility to compaction and field work for the federal state of Lower Saxony per half-months and identified three clusters with more or less compaction risk for Lower Saxony. In spring, mainly manure spreading to maize and in autumn harvesting of maize and sugar beets are contributing to the yearly probability of compaction risk in top soils. With the presented approach risk areas can be identified. For the evaluation of the current compaction risks, farm specifications on machinery and timing of field work must also be taken into account

    7. ANHANG

    No full text
    corecore