1,083 research outputs found
A disruptive approach to eliminating weapongrade plutonium - Pu burning in a molten salt fast reactor
The successful implementation of disarmament treaties of the last centuries has led to significant amounts of weapon-grade Plutonium which are currently stored in high security storage facilities. Disposing this Plutonium should be seen as 'good housekeeping' avoiding unnecessary costs and the hazards of storing this material indefinitely. In addition, the disarmament is only brought to a successful end when the Plutonium isn't available for the production of new weapons anymore. We propose a disruptive approach for Plutonium disposition and demonstrate the feasibility in a neutronic study. Burning of weapon-grade Plutonium in a molten salt fast reactor is significantly more efficient than in the studied other reactors, while efficient process design has the potential to reduce the security concerns significantly. The proposed system could turn about 1.25 tons of weapon-grade Plutonium into electric energy worth ÂŁ 0.5 to 1 billion/year, depending on the electricity price while avoiding the hassle and eliminating the risk of high security Plutonium storage. In conclusion, burning of the weapon-grade Plutonium resulting from disarmament could be an economically very attractive approach to reduce the nuclear threat
Studie zur Partitionierung und Transmutation (P&T) hochradioaktiver Abfälle Stand der Grundlagen- und technologischen Forschung
Das, dem Teilprojekt zu Grunde liegende, Gesamtprojekt gliederte sich in zwei Module: In Modul A (Förderung durch das BMWi, Federführung durch KIT) und Modul B (Förderung durch das BMBF, Federführung durch acatech). Projektpartner im Modul A waren DBE TECHNOLOGY GmbH, die Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), das Helmholtz-Zentrum Dresden-Rossendorf (HZDR), das Karlsruher Institut für Technologie (KIT) und die Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen zusammen mit dem Forschungszentrum Jülich (FZJ). Modul B wurde vom Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart (ZIRIUS) bearbeitet. Die Gesamtkoordination der beidem Module erfolgte durch die Deutsche Akademie der Technikwissenschaften (acatech). Auf Grundlage einer Analyse der wissenschaftlich-technischen Aspekte durch Modul A wurden die gesellschaftlichen Implikationen bewertet und daraus in Modul B Kommunikations- und Handlungsempfehlungen für die zukünftige Positionierung von P&T formuliert.
Im, vom HZDR koordinierten, Teilprojekt „Stand der Grundlagen- und technologischen Forschung“ wird eine Übersicht über den genannten Bereich gegeben. Eingeführt wird das Thema mit einer Kurzbeschreibung möglicher Reaktorsysteme für die Transmutation. Danach wird der Entwicklungsstand der Spezialbereiche Trennchemie, Sicherheitstechnologie, Beschleunigertechnologie Flüssigmetalltechnologie, Entwicklung von Spallationstargets, Transmutationsbrennstoffen und Werkstoffkonzepten sowie Konditionierung von Abfällen, beschrieben. Dies wird ergänzt durch Spezifika von Transmutationsanlagen beginnend bei physikalischen Grundlagen und Kerndesigns, über Reaktorphysik von Transmutationsanlagen, Simulationstools und die Entwicklung von Safety Approaches. Im Anschluss wird der Stand existierender Bestrahlungseinrichtungen mit schnellem Spektrum beschrieben. Nachfolgend werden basierend auf dem derzeitigen Stand von F&E die offenen Fragen und Forschungslücken in den einzelnen Teilbereichen – Wiederaufbereitung und Konditionierung, Beschleuniger und Spallationstarget, Reaktor – zusammengestellt und sowohl eine Strategie, als auch ein Fahrplan zur Schließung der Technology Gaps entwickelt.
Zusätzlich werden die Hauptbeiträge, des HZDR zur Gesamtstudie beschrieben. Dies sind insbesondere die Beschreibungen der Möglichkeiten und Grenzen von P&T, die Herausforderungen an Bestrahlungseinrichtungen zur Transmutation und deren Effektivität, sowie Sicherheitsmerkmale beschleuniger-getriebener unterkritischer Systeme inclusive grundlegender Störfallbetrachtungen und Sicherheitscharakteristik.The main project, where this sub project contributed to, has been structured into two modules: module A (funded by the federal ministry of economics, managed by KIT) and module B (funded by the federal ministry of education and research, managed by acatech). Partners in module A were DBE TECHNOLOGY GmbH, the Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Karlsruher Institute of Technology (KIT) and the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, in co-operation with the Forschungszentrum Jülich (FZJ). Modul B has been executed by the Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart (ZIRIUS). The overall coordination has been carried out by the Deutsche Akademie der Technikwissenschaften (acatech). The social implications have been evaluated in module B based on the analysis of the scientific and technological aspects in module A. Recommendations for communication and actions to be taken for the future positioning of P&T have been developed.
In the project part, coordinated by HZDR – status of R&D – an overview on the whole topic P&T is given. The topic is opened by a short description of reactor systems possible for transmutation. In the following the R&D status of separation technologies, safety technology, accelerator technology, liquid metal technology, spallation target development, transmutation fuel and structural material development, as well as waste conditioning is described. The topic is completed by the specifics of transmutation systems, the basic physics and core designs, the reactor physics, the simulation tools and the development of Safety Approaches. Additionally, the status of existing irradiation facilities with fast neutron spectrum is described. Based on the current R&D status, the research and technology gaps in the topics: separation and conditioning, accelerator and spallation target, and reactor are characterized and a strategy as well as a roadmap for closing these gaps has been developed.
In addition the major contributions of HZDR to the main project are described. The major parts are the description of the potential and the limits of P&T, the requirements and challenges for transmutation systems and the related efficiency, as well as the safety features of accelerator driven subcritical systems including the transient behavior and the safety characteristics
The Potential of Pressurised Water Reactors to Provide Flexible Response in Future Electricity Grids
The electricity market is undergoing significant change with the increasing deployment of Variable Renewable Energy Sources (VRES) and the adoption of policies to electrify transport, heating and industry, which will continue to increase demands on all conventional power plants including nuclear. The increase in VRES also puts additional emphasis on services such as inertia and frequency response that only conventional plants, including nuclear, are readily able to meet. This study discusses what factors limit the ability of nuclear power plants to provide flexible response and how the UK nuclear power plants might be affected by the changes in future demand profiles. The study focuses on what impact there will be on current Pressurised Water Reactor (PWR) plants, though it also considers Small Modular Pressurised Water Reactor plants which might offer benefits with respect to improved power manoeuvrability. The main finding is that the most important attribute is the minimum power level for long-term operation, followed by the speed at which the plants can be brought online (that is, both start-up rate and ramp rate during power operation). With respect to both of these attributes, new build future PWR plants could potentially achieve large and rapid power changes by dumping part of the steam directly into the condenser, bypassing the steam turbine. Discussions with plant operators highlighted that there is currently limited demand for flexible operation in the UK from nuclear plants when other power plants are readily available to partake in flexible operation. The lack of any requirement for nuclear plants to operate flexibly means that the UK lags behind France, for example, which has much more experience in nonstationary operation of nuclear power plants. The paper also draws attention to the fact that with increasing VRES, there will be fewer plants able to provide rotational inertia and therefore more emphasis on the role the remaining plants (which include nuclear) can play in maintaining grid stability.</jats:p
On the Dimensions Required for a Molten Salt Zero Power Reactor Operating on Chloride Salts
Molten salt reactors have gained substantial interest in the last years due to their flexibility and their potential for simplified closed fuel cycle operation for massive expansion in low-carbon electricity production, which will be required for a future net-zero society. The importance of a zero-power reactor for the process of developing a new, innovative rector concept, such as that required for the molten salt fast reactor based on iMAGINE technology, which operates directly on spent nuclear fuel, is described here. It is based on historical developments as well as the current demand for experimental results and key factors that are relevant to the success of the next step in the development process of all innovative reactor types. In the systematic modelling and simulation of a zero-power molten salt reactor, the radius and the feedback effects are studied for a eutectic based system, while a heavy metal rich chloride-based system are studied depending on the uranium enrichment accompanied with the effects on neutron flux spectrum and spatial distribution. These results are used to support the relevant decision for the narrowing down of the configurations supported by considerations on cost and proliferation for the follow up 3-D analysis. The results provide for the first time a systematic modelling and simulation approach for a new reactor physics experiment for an advanced technology. The expected core volumes for these configurations have been studied using multi-group and continuous energy Monte-Carlo simulations identifying the 35% enriched systems as the most attractive. This finally leads to the choice of heavy metal rich compositions with 35% enrichment as the reference system for future studies of the next steps in the zero power reactor investigation. An alternative could be the eutectic system in the case the increased core diameter is manageable. The inter-comparison of the different applied codes and approaches available in the SCALE package has delivered a very good agreement between the results, creating trust into the developed and used models and methods.</jats:p
Neutronics design of shutdown and control systems for a Zero Power Experiments of chloride-based molten salt fast reactor
Nuclear power’s role as a reliable, baseload, low-carbon source and its importance in achieving clean energy goals are being increasingly recognized with growing urgency around decarbonization of the global energy systems. However, to deliver a long-term sustainable solution, it is essential to develop innovative nuclear technologies for improving the fuel utilization and reducing the nuclear waste disposal challenge. Zero Power Reactors (ZPR) are an essential initial step for developing new nuclear technologies because they allow for testing and refinement in a safe environment before large-scale deployment. This paper discusses the design of a ZPR experiments for the development of iMAGINE, a novel chloride-based molten salt reactor technology. The paper presents a detailed analysis of the neutronic design for the shutdown and control systems of an experimental ZPR based on the iMAGINE molten salt reactor technology. The study concludes that a split-core design with a lower corner reflector as an extension of the lower annular reflector offers the most robust ZPR configuration, offering optimum operational margins and maneuverability. This design ensures safety, regulatory compliance, and sufficient control and shutdown performance for the successful development of the iMAGINE technology
Coupling between LOTUS and CTF with DYN3D within a multiscale and multiphysics software development
Coupling of nuclear codes can be performed at several scale levels and is necessary to improve their reliability and sustainability. Mainly, the coupling of nuclear codes that use nodal expansion neutronics with channel thermal hydraulics has been carried out at the fuel assembly level while, only recently, the coupling of nuclear codes that use advanced neutronics, thermal hydraulics, and thermo-mechanics has been carried out at either the fuel pin or materials level. Meanwhile, in the UK, a multiscale and multi-physics software development between NURESIM and CASL is being developed, which includes a coupling software environment that enables the coupling of nuclear codes at several scale levels. Full coupled reactor physics at either the fuel pin or materials level can be obtained by coupling the transport code LOTUS, the subchannel code CTF, and the nodal code DYN3D. In this journal article, a multi ways coupling between LOTUS and CTF at either the fuel pin or materials levels with DYN3D at the fuel assembly level is compared to a multi ways coupling between DYN3D and CTF at the fuel pin level with DYN3D at the fuel assembly level and a multi ways coupling between Open MC and CTF at the materials level with DYN3D at the fuel assembly level. These comparisons have been carried out to present the coupled reactor physics verifications at either the fuel pin or materials levels. These show that the multi ways coupling between LOTUS and CTF at either the fuel pin or materials levels with DYN3D at the fuel assembly level outperforms the multi ways coupling between DYN3D and CTF at the fuel pin level with DYN3D at the fuel assembly level due to the application in the former of full neutron transport. Also, these show that the multi ways coupling between LOTUS and CTF at the materials level with DYN3D at the fuel assembly level agrees with the multi ways coupling between Open MC and CTF at the materials level with DYN3D at the fuel assembly level due to the application in both of full neutron transport
- …