70 research outputs found

    Protoplanetary disk lifetimes vs stellar mass and possible implications for giant planet populations

    Full text link
    We study the dependence of protoplanetary disk evolution on stellar mass using a large sample of young stellar objects in nearby young star-forming regions. We update the protoplanetary disk fractions presented in our recent work (paper I of this series) derived for 22 nearby (< 500 pc) associations between 1 and 100 Myr. We use a subsample of 1 428 spectroscopically confirmed members to study the impact of stellar mass on protoplanetary disk evolution. We divide this sample into two stellar mass bins (2 M⊙_{\odot} boundary) and two age bins (3 Myr boundary), and use infrared excesses over the photospheric emission to classify objects in three groups: protoplanetary disks, evolved disks, and diskless. The homogeneous analysis and bias corrections allow for a statistically significant inter-comparison of the obtained results. We find robust statistical evidence of disk evolution dependence with stellar mass. Our results, combined with previous studies on disk evolution, confirm that protoplanetary disks evolve faster and/or earlier around high-mass (> 2 M⊙_{\odot}) stars. We also find a roughly constant level of evolved disks throughout the whole age and stellar mass spectra. We conclude that protoplanetary disk evolution depends on stellar mass. Such a dependence could have important implications for gas giant planet formation and migration, and could contribute to explaining the apparent paucity of hot Jupiters around high-mass stars.Comment: Accepted for publication in A&A. 13 pages, 8 figures, 5 table

    New member candidates of Upper Scorpius from Gaia DR1

    Full text link
    Context. Selecting a cluster in proper motion space is an established method for identifying members of a star forming region. The first data release from Gaia (DR1) provides an extremely large and precise stellar catalogue, which when combined with the Tycho-2 catalogue gives the 2.5 million parallaxes and proper motions contained within the Tycho-Gaia Astrometric Solution (TGAS). Aims. We aim to identify new member candidates of the nearby Upper Scorpius subgroup of the Scorpius-Centaurus Complex within the TGAS catalogue. In doing so, we also aim to validate the use of the DBSCAN clustering algorithm on spatial and kinematic data as a robust member selection method. Methods. We constructed a method for member selection using a density-based clustering algorithm (DBSCAN) applied over proper motion and distance. We then applied this method to Upper Scorpius, and evaluated the results and performance of the method. Results. We identified 167 member candidates of Upper Scorpius, of which 78 are new, distributed within a 10∘^{\circ} radius from its core. These member candidates have a mean distance of 145.6 ±\pm 7.5 pc, and a mean proper motion of (-11.4, -23.5) ±\pm (0.7, 0.4) mas/yr. These values are consistent with measured distances and proper motions of previously identified bona-fide members of the Upper Scorpius association.Comment: 8 pages, 9 figures and 1 table. Accepted for publication in Astronomy and Astrophysic

    Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    Get PDF
    Dust in debris disks is produced by colliding or evaporating planetesimals, remnants of the planet formation process. Warm dust disks, known by their emission at < 24 micron, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.Comment: 8 pages, 3 figures, accepted for publication at Astronomy & Astrophysics on 4 August 201

    Infrared study of transitional disks in Ophiuchus with Herschel

    Full text link
    Context. Observations of nearby star-forming regions with the Herschel Space Observatory complement our view of the protoplanetary disks in Ophiuchus with information about the outer disks. Aims. The main goal of this project is to provide new far-infrared fluxes for the known disks in the core region of Ophiuchus and to identify potential transitional disks using data from Herschel. Methods. We obtained PACS and SPIRE photometry of previously spectroscopically confirmed young stellar objects (YSO) in the region and analysed their spectral energy distributions. Results. From an initial sample of 261 objects with spectral types in Ophiuchus, we detect 49 disks in at least one Herschel band. We provide new far-infrared fluxes for these objects. One of them is clearly a new transitional disk candidate. Conclusions. The data from Herschel Space Observatory provides fluxes that complement previous infrared data and that we use to identify a new transitional disk candidate.Comment: 21 pages, with 5 figures. Accepted in Astronomy & Astrophysic

    Hubble Asteroid Hunter: II. Identifying strong gravitational lenses in HST images with crowdsourcing

    Full text link
    The Hubble Space Telescope (HST) archives constitute a rich dataset of high resolution images to mine for strong gravitational lenses. While many HST programs specifically target strong lenses, they can also be present by coincidence in other HST observations. We aim to identify non-targeted strong gravitational lenses in almost two decades of images from the ESA it Hubble Space Telescope archive (eHST), without any prior selection on the lens properties. We used crowdsourcing on the Hubble Asteroid Hunter (HAH) citizen science project to identify strong lenses, alongside asteroid trails, in publicly available large field-of-view HST images. We visually inspected 2354 objects tagged by citizen scientists as strong lenses to clean the sample and identify the genuine lenses. We report the detection of 252 strong gravitational lens candidates, which were not the primary targets of the HST observations. 198 of them are new, not previously reported by other studies, consisting of 45 A grades, 74 B grades and 79 C grades. The majority are galaxy-galaxy configurations. The newly detected lenses are, on average, 1.3 magnitudes fainter than previous HST searches. This sample of strong lenses with high resolution HST imaging is ideal to follow-up with spectroscopy, for lens modelling and scientific analyses. This paper presents an unbiased search of lenses, which enabled us to find a high variety of lens configurations, including exotic lenses. We demonstrate the power of crowdsourcing in visually identifying strong lenses and the benefits of exploring large archival datasets. This study shows the potential of using crowdsourcing in combination with artificial intelligence for the detection and validation of strong lenses in future large-scale surveys such as ESA's future mission Euclid or in JWST archival images.Comment: 24 page, 14 figures, 5 tables, accepted for publication in A&A June 28 202

    ESASky v.2.0: all the skies in your browser

    Full text link
    With the goal of simplifying the access to science data to scientists and citizens, ESA recently released ESASky (http://sky.esa.int), a new open-science easy-to-use portal with the science-ready Astronomy data from ESA and other major data providers. In this presentation, we announced version 2.0 of the application, which includes access to all science-ready images, catalogues and spectra, a feature to help planning of future JWST observations, the possibility to search for data of all (targeted and serendipitously observed) Solar System Objects in Astronomy images, a first support to mobile devices and several other smaller usability features. We also discussed the future evolution of the portal and the lessons learnt from the 1+ year of operations from the point of view of access, visualization and manipulation of big datasets (all sky maps, also called HiPS) and large catalogues (like e.g. the Gaia DR1 catalogues or the Hubble Source Catalogue) and the design and validation principles for the development of friendly GUIs for thin layer web clients aimed at scientists.Comment: 4 pages, 2 figures, ADASS 2017 conference proceeding
    • 

    corecore