We study the dependence of protoplanetary disk evolution on stellar mass
using a large sample of young stellar objects in nearby young star-forming
regions. We update the protoplanetary disk fractions presented in our recent
work (paper I of this series) derived for 22 nearby (< 500 pc) associations
between 1 and 100 Myr. We use a subsample of 1 428 spectroscopically confirmed
members to study the impact of stellar mass on protoplanetary disk evolution.
We divide this sample into two stellar mass bins (2 M⊙ boundary) and
two age bins (3 Myr boundary), and use infrared excesses over the photospheric
emission to classify objects in three groups: protoplanetary disks, evolved
disks, and diskless. The homogeneous analysis and bias corrections allow for a
statistically significant inter-comparison of the obtained results. We find
robust statistical evidence of disk evolution dependence with stellar mass. Our
results, combined with previous studies on disk evolution, confirm that
protoplanetary disks evolve faster and/or earlier around high-mass (> 2
M⊙) stars. We also find a roughly constant level of evolved disks
throughout the whole age and stellar mass spectra. We conclude that
protoplanetary disk evolution depends on stellar mass. Such a dependence could
have important implications for gas giant planet formation and migration, and
could contribute to explaining the apparent paucity of hot Jupiters around
high-mass stars.Comment: Accepted for publication in A&A. 13 pages, 8 figures, 5 table