2,948 research outputs found

    Higher-order in time “quasi-unconditionally stable” ADI solvers for the compressible Navier–Stokes equations in 2D and 3D curvilinear domains

    Get PDF
    This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier–Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas–Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are “quasi-unconditionally stable” in the following sense: each algorithm is stable for all couples (h,Δt)of spatial and temporal mesh sizes in a problem-dependent rectangular neighborhood of the form (0,M_h)×(0,M_t). In other words, for each fixed value of Δt below a certain threshold, the Navier–Stokes solvers presented in this paper are stable for arbitrarily small spatial mesh-sizes. The second-order formulation has further been rigorously shown to be unconditionally stable for linear hyperbolic and parabolic equations in two-dimensional space. Although implicit ADI solvers for the Navier–Stokes equations with nominal second-order of temporal accuracy have been proposed in the past, the algorithms presented in this paper are the first ADI-based Navier–Stokes solvers for which second-order or better accuracy has been verified in practice under non-trivial (non-periodic) boundary conditions

    Higher-order implicit-explicit multi-domain compressible Navier-Stokes solvers

    Get PDF
    This paper presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional multi-domains. Building up on the recent single-domain ADI-based high-order Navier-Stokes solvers (Bruno and Cubillos, Journal of Computational Physics 307 (2016) 476-495) this article presents multi-domain implicit-explicit methods of high-order of temporal accuracy. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of high-order backward differentiation formulae (BDF) and an alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Nearly dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. As demonstrated via a variety of numerical experiments in two and three dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, robust stability properties, limited dispersion, and high parallel efficiency

    Investigation of Near-Field Pulsed EMI at IC Level

    Get PDF
    International audienceThis article describes the use of a near-field electromagnetic pulse EMP injection technique in order to perform a hardware cryptanalysis of the AES algorithm. This characterization technique is based on the fact that conductors, such as the rails of a Power Distribution Network PDN which is one of the primary EMI risk factors, act as antennas for the radiated EMP energy. This energy induces high electrical currents in the PDN responsible for the violation of the integrated circuit's timing constraints. This modification of the chip's behavior is then exploited in order to recover the AES key by using cryptanalysis techniques based on Differential Fault Analysis (DFA)

    Blood pressure long term regulation: A neural network model of the set point development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The notion of the nucleus tractus solitarius (NTS) as a comparator evaluating the error signal between its rostral neural structures (RNS) and the cardiovascular receptor afferents into it has been recently presented. From this perspective, stress can cause hypertension via set point changes, so offering an answer to an old question. Even though the local blood flow to tissues is influenced by circulating vasoactive hormones and also by local factors, there is yet significant sympathetic control. It is well established that the state of maturation of sympathetic innervation of blood vessels at birth varies across animal species and it takes place mostly during the postnatal period. During ontogeny, chemoreceptors are functional; they discharge when the partial pressures of oxygen and carbon dioxide in the arterial blood are not normal.</p> <p>Methods</p> <p>The model is a simple biological plausible adaptative neural network to simulate the development of the sympathetic nervous control. It is hypothesized that during ontogeny, from the RNS afferents to the NTS, the optimal level of each sympathetic efferent discharge is learned through the chemoreceptors' feedback. Its mean discharge leads to normal oxygen and carbon dioxide levels in each tissue. Thus, the sympathetic efferent discharge sets at the optimal level if, despite maximal drift, the local blood flow is compensated for by autoregulation. Such optimal level produces minimum chemoreceptor output, which must be maintained by the nervous system. Since blood flow is controlled by arterial blood pressure, the long-term mean level is stabilized to regulate oxygen and carbon dioxide levels. After development, the cardiopulmonary reflexes play an important role in controlling efferent sympathetic nerve activity to the kidneys and modulating sodium and water excretion.</p> <p>Results</p> <p>Starting from fixed RNS afferents to the NTS and random synaptic weight values, the sympathetic efferents converged to the optimal values. When learning was completed, the output from the chemoreceptors became zero because the sympathetic efferents led to normal partial pressures of oxygen and carbon dioxide.</p> <p>Conclusions</p> <p>We introduce here a simple simulating computational theory to study, from a neurophysiologic point of view, the sympathetic development of cardiovascular regulation due to feedback signals sent off by cardiovascular receptors. The model simulates, too, how the NTS, as emergent property, acts as a comparator and how its rostral afferents behave as set point.</p

    A unified formalism for side-channel and fault attacks on cryptographic circuits

    Get PDF
    National audienceSecurity is a key component for information technologies and communication. Security is a very large research area involved in the whole information technology, related to both hardware and software. This paper focuses on hardware security, and more specifically on hardware cryptanalysis whose aim is to extract confidential information (such as encryption keys) from cryptographic circuits. Many physical cryptanalysis techniques have been proposed in the last ten years but they always belong to one of those very distinct categories: fault and side channel attacks. In this article, a formal link between these two categories is proposed. To the best of our knowledge, this is the first time that a wide class of attacks is described in such a generic manner

    Experimental validation of a Bulk Built-In Current Sensor for detecting laser-induced currents

    Get PDF
    International audience—Bulk Built-In Current Sensors (BBICS) were developed to detect the transient bulk currents induced in the bulk of integrated circuits when hit by ionizing particles or pulsed laser. This paper reports the experimental evaluation of a complete BBICS architecture, designed to simultaneously monitor PMOS and NMOS transistors, under Photoelectric Laser Stimulation (PLS). The obtained results are the first experimental proof of the efficiency of BBICS in laser fault injection detection attempts. Furthermore, this paper highlights the importance of BBICS tapping in a sensitive area (logical gates) for improved laser detection. It studies the performances of this BBICS architecture and suggests modifications for its future implementation
    • 

    corecore