9,907 research outputs found

    Partial Substitution of Cu Sites by Mg for the Improvement of CuWO4 Photoanodes Performance

    Get PDF
    The photoelectrochemical properties of CuWO4 (Mg x%) thin-films obtained by solution-based methods are investigated as a function of the material composition. The thin-films are prepared by spin-coating a single precursor solution onto FTO-coated glass substrates, followed by an annealing process at 550 °C. XRD, Raman, XPS, and electrochemical data studies indicate the formation of single-phase CuWO4 (Mg x%), with Mg2+ partially substituting Cu2+ sites. Photoelectrochemical studies under monochromatic illumination show an 88.2% increase in photocurrent responses and a 2-fold increase in charge carriers bulk separation efficiency at 1.0 V vs RHE, upon replacing 2.5% of Cu by Mg. DFT calculations reveal that Mg incorporation rearranges electron density, shifting the position of magnesium toward an axial oxygen atom, increasing the covalent nature of the bond and decreasing the Cu–O bond length. It is proposed that a change in the localization of the electron density away from the sphere of influence of the oxygen atom, and toward the shared space of the covalent bond, leads to better carrier mobility and the generation of higher photocurrents

    Applicability of in vivo staging of regional amyloid burden in a cognitively normal cohort with subjective memory complaints: the INSIGHT-preAD study.

    Get PDF
    BACKGROUND:Current methods of amyloid PET interpretation based on the binary classification of global amyloid signal fail to identify early phases of amyloid deposition. A recent analysis of 18F-florbetapir PET data from the Alzheimer's disease Neuroimaging Initiative cohort suggested a hierarchical four-stage model of regional amyloid deposition that resembles neuropathologic estimates and can be used to stage an individual's amyloid burden in vivo. Here, we evaluated the validity of this in vivo amyloid staging model in an independent cohort of older people with subjective memory complaints (SMC). We further examined its potential association with subtle cognitive impairments in this population at elevated risk for Alzheimer's disease (AD). METHODS:The monocentric INSIGHT-preAD cohort includes 318 cognitively intact older individuals with SMC. All individuals underwent 18F-florbetapir PET scanning and extensive neuropsychological testing. We projected the regional amyloid uptake signal into the previously proposed hierarchical staging model of in vivo amyloid progression. We determined the adherence to this model across all cases and tested the association between increasing in vivo amyloid stage and cognitive performance using ANCOVA models. RESULTS:In total, 156 participants (49%) showed evidence of regional amyloid deposition, and all but 2 of these (99%) adhered to the hierarchical regional pattern implied by the in vivo amyloid progression model. According to a conventional binary classification based on global signal (SUVRCereb = 1.10), individuals in stages III and IV were classified as amyloid-positive (except one in stage III), but 99% of individuals in stage I and even 28% of individuals in stage II were classified as amyloid-negative. Neither in vivo amyloid stage nor conventional binary amyloid status was significantly associated with cognitive performance in this preclinical cohort. CONCLUSIONS:The proposed hierarchical staging scheme of PET-evidenced amyloid deposition generalizes well to data from an independent cohort of older people at elevated risk for AD. Future studies will determine the prognostic value of the staging approach for predicting longitudinal cognitive decline in older individuals at increased risk for AD

    Wind-induced Cross-Strait Sea Level Variability in the Strait of Gibraltar using Coastal Altimetry and In-Situ Measurements

    Full text link
    In this work, we retracked altimeter waveforms of ESA satellites. ERS2 RA and Envisat RA2 from descending track 0360 over the eastern side of the Strait of Gibraltar using the Adaptive Leading Edge Subwaveform ALES retracker

    Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error

    Full text link
    We have recently presented an investigation in full general relativity of the dynamics and gravitational-wave emission from binary neutron stars which inspiral and merge, producing a black hole surrounded by a torus (see arXiv:0804.0594). We here discuss in more detail the convergence properties of the results presented in arXiv:0804.0594 and, in particular, the deterioration of the convergence rate at the merger and during the survival of the merged object, when strong shocks are formed and turbulence develops. We also show that physically reasonable and numerically convergent results obtained at low-resolution suffer however from large truncation errors and hence are of little physical use. We summarize our findings in an "error budget", which includes the different sources of possible inaccuracies we have investigated and provides a first quantitative assessment of the precision in the modelling of compact fluid binaries.Comment: 13 pages, 5 figures. Minor changes to match published version. Added figure 5 right pane

    Fast electron transport patterns in intense laser-irradiated solids diagnosed by modeling measured multi-MeV proton beams

    Get PDF
    The measured spatial-intensity distribution of the beam of protons accelerated from the rear side of a solid target irradiated by an intense (>10 Wcm) laser pulse provides a diagnostic of the two-dimensional fast electron density profile at the target rear surface and thus the fast electron beam transport pattern within the target. An analytical model is developed, accounting for rear-surface fast electron sheath dynamics, ionization and projection of the resulting beam of protons. The sensitivity of the spatial-intensity distribution of the proton beam to the fast electron density distribution is investigated. An annular fast electron beam transport pattern with filamentary structure is inferred for the case of a thick diamond target irradiated at a peak laser intensity of 6 × 10 Wcm

    Radiation pressure-driven plasma surface dynamics in ultra-intense laser pulse interactions with ultra-thin foils

    Get PDF
    The dynamics of the plasma critical density surface in an ultra-thin foil target irradiated by an ultra-intense ( ∼ 6 × 1020 Wcm−2 ) laser pulse is investigated experimentally and via 2D particle-in- cell simulations. Changes to the surface motion are diagnosed as a function of foil thickness. The experimental and numerical results are compared with hole-boring and light-sail models of radi- ation pressure acceleration, to identify the foil thickness range for which each model accounts for the measured surface motion. Both the experimental and numerical results show that the onset of relativistic self-induced transparency, in the thinnest targets investigated, limits the velocity of the critical surface, and thus the e ff ectiveness of radiation pressure acceleration

    Scheduling jobs that arrive over time

    Get PDF
    A natural and basic problem in scheduling theory is to provide good average quality of service to a stream of jobs that arrive over time. In this paper we consider the problem of scheduling n jobs that are released over time in order to minimize the average completion time of the set of jobs. In contrast to the problem of minimizing average completion time when all jobs are available at time 0, all the problems that we consider are NP-hard, and essentially nothing was known about constructing good approximations in polynomial time. We give the first constant-factor approximation algorithms for several variants of the single and parallel machine model. Many of the algorithms are based on interesting algorithmic and structural relationships between preemptive and nonpreemptive schedules and linear programming relaxations of both. Many of the algorithms generalize to the minimization of average weighted completion time as well
    corecore