21,210 research outputs found

    SOPHIE velocimetry of Kepler transit candidates IX. KOI-415 b: a long-period, eccentric transiting brown dwarf to an evolved Sun

    Full text link
    We report the discovery of a long-period brown-dwarf transiting companion of the solar-type star KOI-415. The transits were detected by the Kepler space telescope. We conducted Doppler measurements using the SOPHIE spectrograph at the Observatoire de Haute-Provence. The photometric and spectroscopic signals allow us to characterize a 62.14+-2.69 Mjup, brown-dwarf companion of an evolved 0.94+-0.06 Msun star in a highly eccentric orbit of P = 166.78805+-0.00022 days and e = 0.698+-0.002. The radius of KOI-415 b is 0.79 (-0.07,+0.12) Rjup, a value that is compatible with theoretical predictions for a 10 Gyr, low-metallicity and non-irradiated object.Comment: accepted in A&A Letter

    SOPHIE velocimetry of Kepler transit candidates XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system

    Full text link
    As part of our follow-up campaign of Kepler planets, we observed Kepler-117 with the SOPHIE spectrograph at the Observatoire de Haute-Provence. This F8-type star hosts two transiting planets in non-resonant orbits. The planets, Kepler-117 b and c, have orbital periods ≃18.8\simeq 18.8 and ≃50.8\simeq 50.8 days, and show transit-timing variations (TTVs) of several minutes. We performed a combined Markov chain Monte Carlo (MCMC) fit on transits, radial velocities, and stellar parameters to constrain the characteristics of the system. We included the fit of the TTVs in the MCMC by modeling them with dynamical simulations. In this way, consistent posterior distributions were drawn for the system parameters. According to our analysis, planets b and c have notably different masses (0.094±0.0330.094 \pm 0.033 and 1.84±0.181.84 \pm 0.18 MJ_{\rm J}) and low orbital eccentricities (0.0493±0.00620.0493 \pm 0.0062 and 0.0323±0.00330.0323 \pm 0.0033). The uncertainties on the derived parameters are strongly reduced if the fit of the TTVs is included in the combined MCMC. The TTVs allow measuring the mass of planet b, although its radial velocity amplitude is poorly constrained. Finally, we checked that the best solution is dynamically stable.Comment: 16 pages, of whom 5 of online material.12 figures, of whom 2 in the online material. 7 tables, of whom 4 in the online material. Published in A&

    Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b

    Full text link
    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive.Comment: 13 pages, 4 figures, 6 tables, final version accepted for publication in A&

    SOPHIE velocimetry of Kepler transit candidates XI. Kepler-412 system: probing the properties of a new inflated hot Jupiter

    Full text link
    We confirm the planetary nature of Kepler-412b, listed as planet candidate KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program of Kepler-released planet candidates, which is on going with the SOPHIE spectrograph. We performed a complete analysis of the system by combining the Kepler observations from Q1 to Q15, to ground-based spectroscopic observations that allowed us to derive radial velocity measurements, together with the host star parameters and properties. We also analyzed the light curve to derive the star's rotation period and the phase function of the planet, including the secondary eclipse. We found the planet has a mass of 0.939 ±\pm 0.085 MJup_{Jup} and a radius of 1.325 ±\pm 0.043 RJup_{Jup} which makes it a member of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar activity as observed in the Kepler light curve and the rotation of the star of 17.2 ±\pm 1.6 days. From the detected secondary, we derived the day side temperature as a function of the geometric albedo and estimated the geometrical albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux corresponds to a night side brightness temperature of 2154 ±\pm 83 K, much greater than what is expected for a planet with homogeneous heat redistribution. From the comparison to star and planet evolution models, we found that dissipation should operate in the deep interior of the planet. This modeling also shows that despite its inflated radius, the planet presents a noticeable amount of heavy elements, which accounts for a mass fraction of 0.11 ±\pm 0.04.Comment: 11 pages, 9 figure

    Obesity and economic performance of young workers in Italy

    Get PDF
    In this paper we explore recent ISFOL-PLUS 2006-2008-2010 data available for Italy about height and weight of young workers with the purpose of analysing the relationship between measures of obesity and measures of economic performance. Among the latter, we introduce job satisfaction, both overall and for nine specific aspects, which has not been previously considered in the literature on the effects of obesity. Interestingly enough, we find that BMI does not discriminate young workers with respect to their job earnings, but it does affect negatively young workers' job satisfaction with important gender effects

    Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    Get PDF
    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities (RV) and Kepler short-cadence (SC) data that provide a much better sampling of the transits, ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital inclination is favoured by SC data. This also affects the determination of the geometric albedo that is lower than previously derived: Ag < 0.135; b) Kepler-44b is moderately smaller and denser than reported in the discovery paper; c) good agreement was achieved with published Kepler-43, Kepler-75, and KOI-205 system parameters, although the host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and hotter, respectively; d) the previously reported non-zero eccentricities of Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the two companions would be smaller and denser than in the eccentric case. The radius of Kepler-39b is still larger than predicted by theoretical isochrones. Its parent star is hotter and richer in metals than previously determined. [ABRIDGED]Comment: 17 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    New broad 8Be nuclear resonances

    Full text link
    Energies, total and partial widths, and reduced width amplitudes of 8Be resonances up to an excitation energy of 26 MeV are extracted from a coupled channel analysis of experimental data. The presence of an extremely broad J^pi = 2^+ ``intruder'' resonance is confirmed, while a new 1^+ and very broad 4^+ resonance are discovered. A previously known 22 MeV 2^+ resonance is likely resolved into two resonances. The experimental J^pi T = 3^(+)? resonance at 22 MeV is determined to be 3^-0, and the experimental 1^-? (at 19 MeV) and 4^-? resonances to be isospin 0.Comment: 16 pages, LaTe

    Probing the statistical decay and alpha-clustering effects in 12c+12c and 14n+10b reactions

    Full text link
    An experimental campaign has been undertaken at INFN Laboratori Nazionali di Legnaro, Italy, in order to progress in our understanding of the statistical properties of light nuclei at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. A first reaction 12C+12C at 7.9 AMeV beam energy has been measured, using the GARFIELD+Ring Counter experimental setup. Fusion-evaporation events have been exclusively selected. The comparison to a dedicated Hauser-Feshbach calculation allows us to give constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg. Out-of-equilibrium emission has been evidenced and attributed both to entrance channel effects favoured by the cluster nature of reaction partners and, in more dissipative events, to the persistence of cluster correlations well above the 24Mg threshold for 6 alphas decay. The 24Mg compound nucleus has been studied with a new measurement 14N + 10B at 5.7 AMeV. The comparison between the two datasets would allow us to further constrain the level density of light nuclei. Deviations from a statistical behaviour can be analyzed to get information on nuclear clustering.Comment: 4 pages, 2 figures, Contribution to conference proceedings of the 25th International Nuclear Physics Conference (INPC 2013
    • …
    corecore