5 research outputs found

    Interferometric study on the temporal variability of the brightness distributions of protoplanetary disks

    Full text link
    Multi-epoch observations have revealed the variability of pre-main sequence stars and/or their environment. Moreover, structures in orbital motion around the central star, resulting from planet-disk interaction, are predicted to cause temporal variations in the brightness distributions of protoplanetary disks. Through repeated observations with the Very Large Telescope Interferometer (VLTI) over nearly two decades, the ESO Archive has become a treasure chest containing high-resolution multi-epoch near- and mid-infrared observations of the potential planet-forming regions in protoplanetary disks. We aim to investigate whether the existing multi-epoch observations provide evidence for the variability of the brightness distributions of the innermost few astronomical units of protoplanetary disks and to quantify any variations detected. We present different approaches to search for evidence of temporal variations based on multi-epoch observations obtained with the VLTI instruments PIONIER, AMBER, and MIDI for 68 pre-main sequence stars. For nine objects in our sample, multi-epoch data obtained using equal baselines are available that allow us to directly detect variations in the visibilities due to temporally variable brightness distributions. Significant variations of the near-infrared visibilities obtained in different epochs with PIONIER and/or AMBER for HD 50138, DX Cha, HD 142527, V856 Sco, HD 163296, and R CrA were found. By estimating the impact of a small variation of the baseline on the measured squared visibilities, we are able to compare the data of another 12 pre-main sequence stars. Thereby, we find evidence for temporal variations of the brightness distribution of one additional object, AK Sco. Besides the two binaries DX Cha and AK Sco, HD 50138 and V856 Sco also show signs of variability caused by variations of asymmetric structures in the brightness distribution.Comment: Accepted for publication in A&

    Polarization reversal of scattered thermal dust emission in protoplanetary disks at submillimetre wavelengths

    No full text
    Investigation of the polarized light of protoplanetary disks is key for constraining dust properties, disk morphology, and embedded magnetic fields. However, different polarization mechanisms and the diversity of dust grain shapes and compositions lead to ambiguities in the polarization pattern. The so-called “self-scattering” of thermal, re-emitted radiation in the infrared and millimetre and submillimetre wavelengths is discussed as a major polarization mechanism. If the net flux of the radiation field is in the radial direction, it is commonly assumed that the polarization pattern produced by scattering in a protoplanetary disk shows concentric rings for disks seen in face-on orientation. We show that a change of 90° of the polarization vector orientation may occur and mimic the typical pattern of dichroic emission of dust grains aligned by a toroidal magnetic field in disks seen close to face-on. Furthermore, this effect of polarization reversal is a fast-changing function of wavelength and grain size, and is thus a powerful tool to constrain grain composition and size distribution present in protoplanetary disks. In addition, the effect may also provide unique constraints for the disk inclination, especially if the disk is seen close to face-on

    Self-scattering on large, porous grains in protoplanetary disks with dust settling

    No full text
    Context. Observations of protoplanetary disks in the sub-millimetre wavelength range suggest that polarisation is caused by scattering of thermal re-emission radiation. Most of the dust models that are used to explain these observations have major drawbacks: they either use much smaller grain sizes than expected from dust evolution models, or result in polarisation degrees that are lower than observed. Aims. We investigate the effect of dust grain porosity on the observable polarisation due to scattering at sub-millimetre wavelengths arising from grain size distributions up to millimetre sizes, as they are expected to be present close to the midplane of protoplanetary disks. Methods. Using the effective medium theory, we calculated the optical properties of porous dust and used them to predict the behaviour of the observable polarisation degree due to scattering. Subsequently, Monte Carlo radiative transfer simulations for protoplanetary disks with porous dust grains were performed to analyse the additional effect of the optical depth structure, and thus the effect of multiple scattering events and inhomogeneous temperature distributions on the net observable polarisation degree. Results. We find that porous dust grains with moderate filling factors of about 10% increase the degree of polarisation compared to compact grains. For higher grain porosities, that is, grains with a filling factor of 1% or lower, the extinction opacity decreases, as does the optical depth of a disk with constant mass. Consequently, the unpolarised direct radiation dominates the scattered flux, and the degree of polarisation drops rapidly. Even though the simulated polarisation degree is higher than in the case of compact grains, it is still below the typical observed values for face-on disks. However, the polarisation degree can be increased when crucial model assumptions derived from disk and dust evolution theories, for instance, dust settling and millimetre-sized dust grains, are dropped. In the case of inclined disks, however, our reference model is able to achieve polarisation degrees of about 1%, and using higher disk masses, even higher than this

    Interferometric study on the temporal variability of the brightness distributions of protoplanetary disks

    No full text
    Context. Optical and infrared spatially unresolved multi-epoch observations have revealed the variability of pre-main sequence stars and/or their environment. Moreover, structures in orbital motion around the central star, resulting from planet-disk interaction, are predicted to cause temporal variations in the brightness distributions of protoplanetary disks. Through repeated observations of pre-main sequence stars with the Very Large Telescope Interferometer (VLTI) over nearly two decades, the ESO Archive has become a treasure chest containing unprecedented high-resolution multi-epoch near- and mid-infrared observations of the potential planet-forming regions in protoplanetary disks. Aims. We aim to investigate whether the existing multi-epoch observations provide evidence for the variability of the brightness distributions of the innermost few astronomical units of protoplanetary disks and to quantify any variations detected. Methods. We present different approaches to search for evidence of temporal variations based on multi-epoch observations obtained with the VLTI instruments PIONIER, AMBER, and MIDI for 68 pre-main sequence stars. Results. For nine objects in our sample, multi-epoch data obtained using equal baselines are available that allow us to directly detect variations in the visibilities due to temporally variable brightness distributions. Significant variations of the near-infrared visibilities obtained in different epochs with PIONIER and/or AMBER for HD 50138, DX Cha, HD 142527, V856 Sco, HD 163296, and R CrA were found. HD 37806, TW Hya, and CPD-36 6759 show no significant variations. By estimating the impact of a small variation of the baseline on the measured squared visibilities, we are able to compare the data of another 12 pre-main sequence stars. Thereby, we find evidence for temporal variations of the brightness distribution of one additional object, AK Sco. Besides the two binaries DX Cha and AK Sco, HD 50138 and V856 Sco also show signs of variability caused by variations of asymmetric structures in the brightness distribution
    corecore