1,943 research outputs found

    Detection of differential rotation in psi Cap with profile analysis

    Full text link
    We report detection of differential rotation on the F5 dwarf psi Cap using line profile analysis. The Fourier transform of both FeI lambda 5775 and SiI lambda 5772 are used to obtain a projected rotational velocity of v sini = (42+-1)km/s. Modelling of the Fourier transformed profiles shows that the combined effects of equatorial velocity, inclination and differential rotation dominate the line profile while limb darkening and turbulence velocities have only minor effects. Rigid rotation is shown to be inconsistent with the measured profiles. Modelling the line profiles analogous to solar differential rotation we find a differential rotation parameter of alpha = 0.15+-0.1 (15+-10%) comparable to the solar case. To our knowledge this is the first successful measurement of differential rotation through line profile analysis.Comment: 4 pages, 4 figures, accepted for publication in A&A Letter

    Diffusion due to the Beam-Beam Interaction and Fluctuating Fields in Hadron Colliders

    Full text link
    Random fluctuations in the tune, beam offsets and beam size in the presence of the beam-beam interaction are shown to lead to significant particle diffusion and emittance growth in hadron colliders. We find that far from resonances high frequency noise causes the most diffusion while near resonances low frequency noise is responsible for the large emittance growth observed. Comparison of different fluctuations shows that offset fluctuations between the beams causes the largest diffusion for particles in the beam core.Comment: 5 pages, 3 postscript figure

    Towards a Generalized Distribution Formalism for Gauge Quantum Fields

    Full text link
    We prove that the distributions defined on the Gelfand-Shilov spaces, and hence more singular than hyperfunctions, retain the angular localizability property. Specifically, they have uniquely determined support cones. This result enables one to develop a distribution-theoretic techniques suitable for the consistent treatment of quantum fields with arbitrarily singular ultraviolet and infrared behavior. The proofs covering the most general case are based on the use of the theory of plurisubharmonic functions and Hormander's estimates.Comment: 12 p., Department of Theoretical Physics, P.N.Lebedev Physical Institute, Leninsky prosp. 53, Moscow 117924, Russi

    Boundary relations and generalized resolvents of symmetric operators

    Get PDF
    The Kre\u{\i}n-Naimark formula provides a parametrization of all selfadjoint exit space extensions of a, not necessarily densely defined, symmetric operator, in terms of maximal dissipative (in \dC_+) holomorphic linear relations on the parameter space (the so-called Nevanlinna families). The new notion of a boundary relation makes it possible to interpret these parameter families as Weyl families of boundary relations and to establish a simple coupling method to construct the generalized resolvents from the given parameter family. The general version of the coupling method is introduced and the role of boundary relations and their Weyl families for the Kre\u{\i}n-Naimark formula is investigated and explained.Comment: 47 page

    The 13 years of TRMM Lightning Imaging Sensor: From Individual Flash Characteristics to Decadal Tendencies

    Get PDF
    How often lightning strikes the Earth has been the object of interest and research for decades. Several authors estimated different global flash rates using ground-based instruments, but it has been the satellite era that enabled us to monitor lightning thunderstorm activity on the time and place that lightning exactly occurs. Launched into space as a component of NASA s Tropical Rainfall Measuring Mission (TRMM) satellite, in November 1997, the Lighting Imaging Sensor (LIS) is still operating. LIS detects total lightning (i.e., intracloud and cloud-to-ground) from space in a low-earth orbit (35deg orbit). LIS has collected lightning measurements for 13 years (1998-2010) and here we present a fully revised and current total lightning climatology over the tropics. Our analysis includes the individual flash characteristics (number of events and groups, total radiance, area footprint, etc.), composite climatological maps, and trends for the observed total lightning during these 13 years. We have identified differences in the energetics of the flashes and/or the optical scattering properties of the storms cells due to cell-relative variations in microphysics and kinematics (i.e., convective or stratiform rainfall). On the climatological total lightning maps we found a dependency on the scale of analysis (resolution) in identifying the lightning maximums in the tropics. The analysis of total lightning trends observed by LIS from 1998 to 2010 in different temporal (annual and seasonal) and spatial (large and regional) scales, showed no systematic trends in the median to lower-end of the distributions, but most places in the tropics presented a decrease in the highest total lightning flash rates (higher-end of the distributions)

    θ13\theta_{13}, δ\delta and the neutrino mass hierarchy at a γ=350\gamma=350 double baseline Li/B β\beta-Beam

    Full text link
    We consider a β\beta-Beam facility where 8^8Li and 8^8B ions are accelerated at γ=350\gamma = 350, accumulated in a 10 Km storage ring and let decay, so as to produce intense νˉe\bar \nu_e and νe\nu_e beams. These beams illuminate two iron detectors located at L2000L \simeq 2000 Km and L7000L \simeq 7000 Km, respectively. The physics potential of this setup is analysed in full detail as a function of the flux. We find that, for the highest flux (10×101810 \times 10^{18} ion decays per year per baseline), the sensitivity to θ13\theta_{13} reaches sin22θ132×104\sin^2 2 \theta_{13} \geq 2 \times10^{-4}; the sign of the atmospheric mass difference can be identified, regardless of the true hierarchy, for sin22θ134×104\sin^2 2 \theta_{13} \geq 4\times10^{-4}; and, CP-violation can be discovered in 70% of the δ\delta-parameter space for sin22θ13103\sin^2 2 \theta_{13} \geq 10^{-3}, having some sensitivity to CP-violation down to sin22θ13104\sin^2 2 \theta_{13} \geq 10^{-4} for δ90|\delta| \sim 90^\circ.Comment: 35 pages, 20 figures. Minor changes, matches the published versio

    A Magnetic Transition Probed by the Ce Ion in Square-Lattice Antiferromagnet CeMnAsO

    Full text link
    We examined the magnetic properties of the square-lattice antiferromagnets CeMnAsO and LaMnAsO and their solid solutions La1-xCexMnAsO by resistivity, magnetic susceptibility, and heat capacity measurements below room temperature. A first-order phase transition is observed at 34.1 K, below which the ground-state doublet of the Ce ion splits by 3.53 meV. It is likely that Mn moments already ordered above room temperature are reoriented at the transition, as reported for related compounds, such as NdMnAsO and PrMnSbO. This transition generates a large internal magnetic field at the Ce site in spite of the fact that simple Heisenberg interactions should be cancelled out at the Ce site owing to geometrical frustration. The transition takes place at nearly the same temperature with the substitution of La for Ce up to 90%. The Ce moment does not undergo long-range order by itself, but is parasitically induced at the transition, serving as a good probe for detecting the magnetism of Mn spins in a square lattice.Comment: 11 pages, 5 figures, to be published in J. Phys. Soc. Jp

    Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 6: Accelerator Capabilities

    Full text link
    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 6, on Accelerator Capabilities, discusses the future progress of accelerator technology, including issues for high-energy hadron and lepton colliders, high-intensity beams, electron-ion colliders, and necessary R&D for future accelerator technologies.Comment: 26 page

    Quantum Fields in Hyperbolic Space-Times with Finite Spatial Volume

    Get PDF
    The one-loop effective action for a massive self-interacting scalar field is investigated in 44-dimensional ultrastatic space-time R×H3/Γ R \times H^3/\Gamma, H3/ΓH^3/\Gamma being a non-compact hyperbolic manifold with finite volume. Making use of the Selberg trace formula, the ζ\zeta-function related to the small disturbance operator is constructed. For an arbitrary gravitational coupling, it is found that ζ(s)\zeta(s) has a simple pole at s=0s=0. The one-loop effective action is analysed by means of proper-time regularisations and the one-loop divergences are explicitly found. It is pointed out that, in this special case, also ζ\zeta-function regularisation requires a divergent counterterm, which however is not necessary in the free massless conformal invariant coupling case. Finite temperature effects are studied and the high-temperature expansion is presented. A possible application to the problem of the divergences of the entanglement entropy for a free massless scalar field in a Rindler-like space-time is briefly discussed.Comment: 13 pages, LaTex. The contribution of hyperbolic elements has been added. Other minor corrections and reference

    The Sao Paulo Lightning Mapping Array (SPLMA): Prospects to GOES-R GLM and CHUVA

    Get PDF
    This paper presents the characteristics and prospects of a Lightning Mapping Array to be deployed at the city of S o Paulo (SPLMA). This LMA network will provide CHUVA campaign with total lightning, lightning channel mapping and detailed information on the locations of cloud charge regions for the thunderstorms investigated during one of its IOP. The real-time availability of LMA observations will also contribute to and support improved weather situational awareness and mission execution. For GOES-R program it will form the basis of generating unique and valuable proxy data sets for both GLM and ABI sensors in support of several on-going research investigation
    corecore