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Abstract. The Krĕın–Năımark formula provides a parametrization of all selfadjoint exit
space extensions of a (not necessarily densely defined) symmetric operator in terms of max-
imal dissipative (in C+) holomorphic linear relations on the parameter space (the so-called
Nevanlinna families). The new notion of boundary relation makes it possible to interpret these
parameter families as Weyl families of boundary relations and to establish a simple coupling
method to construct generalized resolvents from given parameter families. A general version
of the coupling method is introduced and the role of the boundary relations and their Weyl
families in the Krĕın–Năımark formula is investigated and explained. These notions lead to
several new results and new types of solutions to problems involving generalized resolvents
and their applications, e.g., in boundary-value problems for (ordinary and partial) differen-
tial operators. For instance, an old problem going back to M. A. Năımark and concerning the
analytic characterization of the so-called Năımark extensions is solved.

DOI: 10.1134/S1061920809010026

1. INTRODUCTION

Let H be a separable Hilbert space, let A be a not necessarily densely defined closed symmetric
operator or a relation on H with equal defect numbers n+(A) = n−(A) � ∞, and let ˜A be a selfad-
joint (canonical or exit space) extension of A acting on a Hilbert space ˜H. The compressed resolvent
PH( ˜A− λ)−1|H is referred to as the generalized resolvent of A. The set of all generalized resolvents
of A can be described by the Krĕın–Năımark formula, which was first established in [43, 36] for
densely defined symmetric operators with defect numbers (1, 1) and then extended to the general
case in a number of papers [37, 38, 40]. The Krĕın–Năımark formula plays an important role in
the extension theory of the operator A (see [1–3, 14, 19, 21, 26] and the references therein) and its
numerous applications to classical interpolation problems (see [9, 35–37, 43, 19, 21]), to boundary
value problems (see [22, 23, 27, 28] and the recent publications [30, 31, 42]), as well as to different
types of physical problems (see [2, 3, 11, 12, 45–47] and the references therein).

In the present paper, a new approach to the extension theory of symmetric operators is developed;
it uses the concept of boundary triplet and the notion of coupling. Recall the basic definitions for
the case in which A is a densely defined symmetric operator. Denote by A∗ the adjoint of A.

Definition 1.1 [27, 28]. A collection Π = {H,Γ0,Γ1} formed by a Hilbert space H with dimH =
n±(A) and two linear mappings Γ0 and Γ1 from domA∗ to H is called a boundary triplet for A∗ if
(BT1) abstract Green’s identity holds,

(A∗f, g) − (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom A∗; (1.1)

(BT2) the linear mapping Γ : f ∈ dom A∗ �→ {Γ0f,Γ1f} ∈ H2 is surjective.

The present research was supported by the Academy of Finland (project no. 116842).
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18 V. DERKACH et al.

A wide class of selfadjoint (exit space) extensions ˜A of A can be defined via the following coupling
construction (see [14]) in terms of boundary triplets. Let S1 = A and S2 be two densely defined
symmetric operators acting on Hilbert spaces H1 := H and H2, n±(A) = n±(S2) = n � ∞, and let
ΠA = {H,Γ0,Γ1} and ΠS2 = {H, χ0, χ1} be two boundary triplets for S∗

1 = A∗ and S∗
2 , respectively.

Then the restriction ˜A of the operator A∗ ⊕ S∗
2 to the domain

dom ˜A = { f1 ⊕ f2 ∈ dom A∗ ⊕ dom S∗
2 : Γ0f1 − χ0f2 = Γ1f1 + χ1f2 = 0 } (1.2)

is called a coupling of S1 = A and S2 corresponding to the coupling of boundary triplets ΠA
and ΠS2 . It is a selfadjoint extension of S1 ⊕ S2 acting on H1 ⊕ H2.

Now consider an arbitrary selfadjoint (exit space) extension ˜A of A in the direct sum ˜H = H1⊕H2,
where H1 = H and H2 = ˜H � H. Assume for simplicity that ˜A is an operator and write

Sj = ˜A ∩ H2
j , Tj = { {Pjϕ,Pjϕ

′} : {ϕ,ϕ′} ∈ ˜A }, j = 1, 2, (1.3)

where Pj := PHj
are orthogonal projections of ˜H onto Hj (j = 1, 2). Moreover, choose a boundary

triplet ΠA = {H,Γ0,Γ1} for A∗ = S∗
1 . As was shown in [14], every selfadjoint extension ˜A of A

such that
S1 = A and T2 is closed (1.4)

can be obtained as a coupling (1.2) of A and the operator S2 in (1.3). More precisely, as was shown
in [14], there is a unique boundary triplet ΠS2 = {H, χ0, χ1} for S∗

2 which is defined by

χ0f2 = Γ0f1, χ1f2 = −Γ1f1, f1 ⊕ f2 ∈ dom ˜A, (1.5)

from which ˜A can (uniquely) be recovered using (1.2) and the relation ˜A = (A∗ ⊕ S∗
2 )|

dom Ã
.

To show the relationship between the coupling construction (1.2) and the theory of generalized
resolvents, the notion of Weyl function of the operator A is needed.

Definition 1.2 [18, 19]. Let ΠA = {H,Γ0,Γ1} be a boundary triplet for A∗, and let A0 be a
selfadjoint extension of A with the domain dom A0 := ker Γ0. The operator-valued function M(λ)
defined on the resolvent set ρ(A0) by

Γ1fλ = M(λ)Γ0fλ, fλ ∈ Nλ := ker(A∗ − λ), λ ∈ ρ(A0), (1.6)
is called the Weyl function of A corresponding to the triplet ΠA.

The role of the Weyl function M in extension theory of the operator A is similar to that of the
classical Weyl–Titchmarsh coefficient in the spectral theory of Sturm–Liouville operators. Moreover,
in [41], Definitions 1.1 and 1.2 were extended to the case of nondensely defined symmetric operators,
and the m-function of the Jacobi matrix was interpreted as the Weyl function of a nondensely
defined symmetric operator. As was shown in [19, 21], the Weyl function M is a Q-function of
the pair {A,A0} in the sense of [38], and consequently, it belongs to the class R[H] of Nevanlinna
functions, i.e., M(λ) is holomorphic, has a nonnegative imaginary part ImM(λ) for λ ∈ C+, and
satisfies the symmetry condition M(λ̄) = M(λ)∗. Moreover, every Weyl function is uniformly strict,
i.e., 0 ∈ ρ(Im M(λ)) for λ ∈ C+, and A is a densely defined symmetric operator if and only if its
Weyl function satisfies the additional conditions (see, e.g., [40, 41])

lim
y↑∞

y−1M(iy) = 0 and lim
y↑∞

y · Im (M(iy)h, h) = ∞, h ∈ H \ {0}. (1.7)

If a boundary triplet ΠA = {H,Γ0,Γ1} for A∗ is chosen, then the mapping Γ = {Γ0,Γ1}
establishes a bijective correspondence ˜A → Θ := Γ( ˜AΘ) between the set of symmetric (selfadjoint)
extensions ˜AΘ := ˜A, A ⊂ ˜AΘ ⊂ A∗, of A and the set of symmetric (selfadjoint) linear relations Θ in
the parameter space H. Moreover, as was proved in [18, 19], the following resolvent formula holds:

( ˜AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)(Θ − M(λ))−1γ(λ̄)∗, λ ∈ ρ( ˜AΘ) ∩ ρ(A0). (1.8)

Here γ(λ) := (Γ0�Nλ)−1 and M(λ) are the γ-field and the Weyl function of A corresponding to ΠA,
respectively. Recall ([40]) that the Krĕın–Năımark formula

Rλ = (A0 − λ)−1 − γ(λ)(M(λ) + τ(λ))−1γ(λ̄)∗, λ ∈ ρ(A0) ∩ ρ( ˜A), (1.9)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 16 No. 1 2009
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gives a bijective correspondence between the set of all generalized resolvents Rλ := PH( ˜A−λ)−1�H

of A and the set of all Nevanlinna families τ(λ), which are holomorphic families of maximal dissi-
pative linear relations on C+ continued to C− by the symmetry condition τ(λ̄) = τ(λ)∗.

The proof of the Krĕın–Năımark formula using the coupling construction (1.2) is sketched below.
The key idea of this approach is the following realization result establishing a relationship between
the underlying geometric and analytic objects: every uniformly strict Nevanlinna function is a Weyl
function in the sense of Definitions 1.1 and 1.2 ([40, 21]). Thus, for every Nevanlinna function τ
which is uniformly strict and satisfies (1.7), there exists a densely defined symmetric operator S2

in H2 and a boundary triplet ΠS2 = {H, χ0, χ1} for S∗
2 such that the corresponding Weyl function

is τ . Let H∗ be the restriction of A∗ ⊕ S∗
2 to the domain

dom H∗ = {f = f1 ⊕ f2 ∈ domA∗ ⊕ domS∗
2 : Γ0f1 − χ0f2 = 0} .

Then H := (H∗)∗ is a symmetric extension of A⊕ S2 and τ(λ) + M(λ) is the Weyl function of the
pair {H, ˜A} corresponding to the boundary triplet

{H,Γ(1)
0 ,Γ(1)

1 }, where Γ(1)
0 f = Γ0f1 and Γ(1)

1 f = Γ1f1 + χf2.

The selfadjoint extension ˜A of H with the domain dom ˜A = ker Γ(1)
1 coincides with the coupling

construction in (1.2). Due to (1.8), the resolvent ( ˜A − λ)−1 becomes

( ˜A − λ)−1 = ( ˜A0 − λ)−1 −
( γ(λ)

γ(2)(λ)

)

(τ(λ) + M(λ))−1
(

γ(λ̄)∗ γ(2)(λ̄)∗
)

, (1.10)

where ˜A0 = diag(A0, A
(2)
0 ), A

(2)
0 = ker χ0, and γ(2)(λ) = (χ0�Nλ(S2))−1. The compression of (1.10)

to H gives (1.9).
This construction can be generalized to the case in which τ(λ) does not satisfy (1.7) by invoking

the nondensely defined operator S2. However, this coupling construction is essentially restricted to
uniformly strict Nevanlinna functions τ(λ) or, equivalently, to the case in which (1.4) is satisfied.
To explain the main difficulties arising (even in the case n±(A) = 2) when extending the coupling
method to arbitrary Nevanlinna families, consider two examples.

Example 1.3. Let A be a minimal symmetric operator generated in L2(0, 1) by the differential

expression −D2 = −d2/dx2 on dom A =
◦
W 2

2(0, 1). If ˜A = ˜A∗ is its exit space extension on

˜H = L2(−∞, 1) = L2(−∞, 0) ⊕ L2(0, 1) =: ˜H2 ⊕ ˜H1,

then S2 = −D2 with dom S2 =
◦

W 2
2(−∞, 0). Note that n±(A) = 2, whereas n±(S2) = 1. The

boundary triplets ΠA = {C2,Γ0,Γ1} and ΠS2 = {C, χ0, χ1} for A∗ and S∗
2 can be defined in a

usual way by setting

Γ0
̂f1 =

(

f1(0+)
f1(1)

)

, Γ1
̂f1 =

(

f ′
1(0+)
−f ′

1(1)

)

,
χ0

̂f2 = f2(0−), ̂f1 ∈ A∗,

χ1
̂f2 = −f ′

2(0−), ̂f2 ∈ S∗
2 .

(1.11)

The coupling (1.2) cannot be defined because n±(A) 
= n±(S2). Nevertheless, by setting

χ =
{{

̂f2, col (f2(0−), c,−f ′
2(0−), hc)

}

: ̂f2 ∈ S∗
2 , c ∈ C

}

,

one can still define a (multivalued) boundary mapping χ : S∗
2 → H2, and then formula (1.2) (written

in an appropriate way) remains valid.

In this example, the first of the conditions (1.3) is violated. Typically, one meets this situation
when considering higher-order ordinary differential operators on the entire line or on a half-line.
On the other hand, partial differential operators usually lead to situations in which the second
condition in (1.3) is violated.
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Example 1.4. Let (aij) be a positive definite selfadjoint matrix with complex entries. Consider
the second-order elliptic differential operator

˜A := −
n

∑

i,j=1

(∂/∂xi) aij(∂/∂xj) (1.12)

on ˜H = L2(Rn) with constant coefficients. Then ˜A is selfadjoint on the natural domain dom ˜A =
W 2

2 (Rn). Let now Ω be a bounded domain with smooth boundary ∂Ω. Denote by A = Amin the
minimal elliptic operator generated in L2(Ω) by the differential expression (1.12). As is known

(see, for instance, [9]), if ∂Ω is smooth, then dom A =
◦
W 2

2(Ω). Using the decomposition

˜H = L2(Rn) = L2(Ω1) ⊕ L2(Ω2) =: H1 ⊕ H2, Ω1 := Ω, Ω2 := R
n \ Ω,

we define the operators Sj and Tj , j = 1, 2, by (1.3). Then it can be shown (see Example 7.12)

that S1 = A and dom Sj =
◦

W 2
2(Ωj), j = 1, 2. Further, PjW

2
2 (Rn) = W 2

2 (Ωj). Therefore, in this
case, Tj is a closable operator which is not closed and is defined by

TjPjf = Pj
˜Af, f ∈ W 2

2 (Rn), domTj = W 2
2 (Ωj), j = 1, 2.

In other words, Tj is the elliptic operator generated in L2(Ωj) by the differential expression (1.12)
on the domain dom Tj = W 2

2 (Ωj). At the same time, as is known (see [9]), W 2
2 (Ωj) is dense in

dom(Sj)max = dom S∗
j , and the closure T j = S∗

j coincides with the maximal elliptic operator
(Sj)max, i.e., T j = S∗

j = (Sj)max.

It is possible to overcome both geometrical difficulties explained above by applying the new
concepts of boundary relations and their Weyl families introduced by the authors in [15]. These
concepts generalize the notions of boundary triplet and the corresponding Weyl functions. Recall
(see [15]) that a (possibly multivalued) mapping χ : T2 → H2 is called a boundary relation for S∗

2 if
the Green identity (1.1) and a certain maximality condition (similar to (BT2)) hold and the linear
manifold T2 is dense in S∗

2 . The Weyl family τ of S2 corresponding to the boundary relation χ is
defined by

τ(λ) = Γ(̂Nλ), where ̂Nλ = {{f, λf} : f ∈ ker(T2 − λ)}, (1.13)

and now it belongs to the class of Nevanlinna families. If ˜A is an arbitrary selfadjoint extension of
A not satisfying (1.4), then the induced boundary relation χ defined by the formula

χ =
{{

̂f2,
(

Γ0
̂f1

−Γ1
̂f1

)}

: ̂f1 ⊕ ̂f2 ∈ ˜A, ̂f1 ∈ A∗, ̂f2 ∈ T2

}

(1.14)

is either multivalued or unbounded. For instance, the boundary relation χ in Example 1.3 is mul-
tivalued and the corresponding Weyl function τ(λ) = diag (i

√
λ, h) is not strict. However, ˜A can

still be recovered from A∗ and T2 by using precisely the same coupling conditions as in (1.2).
To include an arbitrary Nevanlinna family in the framework of the coupling method, the main

realization theorem from [15] is needed, which shows that every Nevanlinna family can be realized
as the Weyl family of a boundary relation. One of the key results of the present paper is that, due
to this new inverse result, the coupling construction in (1.2) can also be extended to the case of
arbitrary Nevanlinna families. In this approach, the Nevanlinna family τ(λ) arising in the Krĕın–
Năımark formula (1.9) is treated as the Weyl family of a boundary relation χ : S∗

2 → H2 as defined
in (1.14). This geometric object contains the information concerning the exit space, whereas the
ordinary boundary triplet ΠA = {H,Γ0,Γ1} contains the information concerning the original space.
The exit space extensions ˜A of A are then described by using the coupling conditions in (1.2), and
this leads to new results and new types of solutions of problems involving generalized resolvents.

In the development of the coupling method in this general form, it is shown that one of the
Weyl functions of the pair {A ⊕ S2, ˜A} corresponding to a certain boundary relation of A∗ ⊕ S∗

2 is
given by

M(λ) =
(

−(τ + M)−1 I − (τ + M)−1 · M
I − M · (τ + M)−1 (τ−1 + M−1)−1

)

. (1.15)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 16 No. 1 2009
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Further, the Nevanlinna functions −(τ + M)−1 and (τ−1 + M−1)−1 occurring on the diagonal of
M(λ) in (1.15) can be treated as the Weyl functions of the pairs {H1, ˜A} and {H2, ˜A}, where Hj

are some intermediate symmetric extensions of A, A ⊂ Hj ⊂ ˜A, j = 1, 2. The Weyl function M(λ)
turns out to be a very important and useful object in extension theory. For instance, it immediately
leads to a general analytic criterion for Π-admissibility (see formulas (1.18) below). Recall that a
parameter function τ in (1.9) is said to be Π-admissible if the corresponding minimal selfadjoint
extension ˜A of A is an operator. Moreover, a geometric treatment of the functions −(τ + m)−1

and (τ−1 + m−1)−1 as Weyl functions leads to other simple criteria for Π-admissibility. Note that
functions of the form (1.15) appeared in several papers devoted to the spectral analysis of differential
operators. For instance, 2 × 2-matrix functions M(λ) of the form (1.15) were used by Kac [32] in
connection with the Sturm–Liouville operator L = −D2 + q on R, where M and τ are the Weyl
functions corresponding to the minimal operator L on L2(R+) and L2(R−), respectively (see also
[22, 23]).

The advantage of the approach developed in the present paper can also be shown by a simple
geometric characterization of Π-admissibility by means of the so-called forbidden lineals FΓ and Fχ

associated with a boundary mapping Γ and the induced boundary relation χ, respectively. Further,
geometric and analytic characterizations of selfadjoint extensions of the second kind in the sense
of Năımark are established. Recall that ˜A is a selfadjoint extension of the second kind of a densely
defined symmetric operator A (we write ˜A ∈ Nai2(A)) if and only if dom ˜A ∩ H = dom A. For
instance, if n±(A) = n < ∞, then ˜A ∈ Nai2(A) if and only if n±(S2) = n and domS2 = H2. On
the other hand, as is known, the latter conditions can be expressed by means of the Weyl function
τ of S2 as follows:

lim
y↑∞

y−1τ(iy) = 0 and lim
y↑∞

y · Im (τ(iy)h, h) = ∞, h ∈ H \ {0}. (1.16)

Note that a criterion for the inclusion ˜A ∈ Nai2(A) was obtained earlier by Štraus [52] in another
form; however, the present approach is substantially simpler.

The paper is organized as follows. In Section 2, basic notions are introduced and various prelim-
inary results are established. In particular, some new and useful facts on unitary relations in Krĕın
spaces are presented (for instance, on the composition of unitary relations; see Theorem 2.10).
In Section 3, the notion of boundary relations for S∗, the corresponding Weyl families, orthogonal
couplings, and unitary transformations (in the sense of Krĕın spaces) of boundary relations are
discussed. In that section, generalized boundary triplets and boundary triplets whose Weyl func-
tions take values in [H] are also investigated. In Section 4, there are some general transformation
results concerning boundary relations Γ: H2 → H2 for S∗ whose Weyl family M(λ) belongs to the
class R[H], i.e., M(·) is a Weyl function with values in [H]. In this case, an arbitrary orthogonal
decomposition H = H1 ⊕H2 of H induces the corresponding block operator representation

M(λ) = (Mij(λ))2i,j=1 (1.17)

of M(·). It is shown how one can identify intermediate closed symmetric extensions H of A and
associated boundary relations for H∗ such that the corresponding Weyl function is a given transform
of blocks of (Mij(λ)) including, for instance, linear combinations of Mij(λ) and Schur complements.
In particular, induced boundary relations ˜Γ arise for H∗, whose Weyl function ˜M(·) is equal to either
M11+M22 or −(M11+M22)−1. Similar results for ordinary boundary triplets Π = {H,Γ0,Γ1} for A∗

have been published in [14]. However, the present generalizations are needed here for applications
involving generalized resolvents. In Section 5, the coupling method of [14], as was briefly described
above, is extended to the case of arbitrary Nevanlinna families τ(·). This approach leads to new
results and further geometric insight into various questions in this area. In the coupling method,
the selfadjoint exit space extension ˜A in ˜H ⊃ H is constructed by means of a boundary triplet of
A∗ whose Weyl function is M(·), together with a boundary relation corresponding to the family
τ(·) ∈ ˜R(H). The coupling method makes it possible to treat the families τ(·) and −(τ(·)+M(·))−1

arising in (1.9) as the Weyl families of S2 := ˜A ∩ (˜H � H)2 (see formula (5.1)) and of a certain
intermediate extension of A⊕S2 (see formula (5.34)), respectively. In Section 6, the coupling method
is applied to a new proof of Krĕın–Năımark formula for generalized resolvents. A complete solution
to the problem of Π-admissibility is also given (cf. [14]). Recall that, if A is nondensely defined, then
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22 V. DERKACH et al.

exit space extensions ˜A of A need not be single-valued operators. Using a coupling construction, the
following simple analytic criterion for τ(·) to generate a (minimal) selfadjoint operator extension
A(τ) of A is established: the Nevanlinna family τ(·) in (1.9) corresponds to an operator A(τ) (i.e.,
τ(·) is Π-admissible) if and only if the following two conditions are satisfied:

s- lim
y↑∞

(τ(iy) + M(iy))−1/y = 0, s- lim
y↑∞

(τ(iy)−1 + M(iy)−1)−1/y = 0. (1.18)

Moreover, the results on intermediate extensions given in Section 5 (a geometric treatment of
(τ + M)−1 as a Weyl function) make it possible to show that, if, in addition, A0 (A1) is an
operator, then A(τ) is an operator if and only if the first (second) condition in (1.18) is satisfied,
respectively. Further, in Section 6, an answer to a problem posed by Langer and Textorius in [40]
is given. Finally, Section 7 contains both geometric and analytic characterizations for selfadjoint
extensions of the second kind (in the sense of Năımark) of a densely defined symmetric operator.

A preliminary version of the results presented in this paper was published as a preprint [17]; a part
of the results was announced in [16]. Later on, the coupling method (as it was introduced in [14, 17]
and now further developed in its full generality in the present paper) was also successfully applied
by other authors in diverse general settings; see, for instance, [5–7] and the references therein.

2. PRELIMINARIES
2.1. Linear Relations in Hilbert Spaces

Let H and H′ be Hilbert spaces. A linear relation T from H to H′ is a linear subspace of H×H′.
We systematically identify a linear operator T with its graph. It is convenient to write T : H → H′

and treat the linear relation T as a multivalued linear mapping from H into H′. If H′ = H, one
speaks of a linear relation T on H.

For a linear relation T : H → H′, the inverse T−1 is the linear relation { {f ′, f} : {f, f ′} ∈ T }
from H′ to H. The symbols dom T , ker T , ran T , mul T (= ker T−1), and T ∗ stand for the domain,
the kernel, the range, the multivalued part, and the adjoint of T , respectively (see [8] or [13]). The
sum T1 + T2 and the componentwise sum T1 ̂+T2 of linear relations T1 and T2 are defined by the
rules T1 + T2 = {{f, g + h} : {f, g} ∈ T1, {f, h} ∈ T2} and T1 ̂+ T2 = {{f + h, g + k} : {f, g} ∈ T1,
{h, k} ∈ T2}. If the componentwise sum is orthogonal, we denote it by T1 ⊕ T2. The null spaces of
T − λ, λ ∈ C, are defined by

Nλ(T ) = ker(T − λ), ̂Nλ(T ) = { {f, λf} ∈ T : f ∈ Nλ(T ) }. (2.1)
The symbol ρ(T ) (ρ̂(T )) stands for the set of regular (regular type) points of T . The closure of a
linear relation T is denoted by clos T , and a linear relation T2 is an extension of T1 if T1 ⊂ T2.

The product of linear relations is defined in the standard way. Some basic properties of operator
product remain valid for the product of relations. For instance, the following assertion holds.

Lemma 2.1. Let H1, H2, and H3 be Hilbert spaces and let B : H1 → H2 and A : H2 → H3 be
linear relations. Then

(i) (AB)−1 = B−1A−1 and (A∗)−1 = (A−1)∗;
(ii) (AB)∗ ⊃ B∗A∗;
(iii) if A ∈ [H2,H3] or B−1 ∈ [H2,H1], then (AB)∗ = B∗A∗.

Recall that a linear relation T on H is said to be symmetric (dissipative or accumulative) if
Im (h′, h) = 0 (� 0 or � 0, respectively) for all {h, h′} ∈ T . These properties are preserved under
closure. By polarization, it follows that a linear relation T on H is symmetric if and only if T ⊂ T ∗. A
linear relation T on H is said to be selfadjoint if T = T ∗ and essentially selfadjoint if clos T = T ∗.
A dissipative (accumulative) linear relation T on H is said to be maximal dissipative (maximal
accumulative) if it has no proper dissipative (accumulative) extensions.

Assume that T is closed. If T is dissipative or accumulative, then the orthogonal decomposition
H = (mulT )⊥ ⊕ mulT induces an orthogonal decomposition of T ,

T = Ts ⊕ T∞, T∞ = {0} × mulT, Ts = { {f, g} ∈ T : g ⊥ mulT }, (2.2)

where T∞ is a selfadjoint relation on mulT and Ts is an operator on H � mul T such that
dom Ts = dom T = (mulT ∗)⊥, which is dissipative or accumulative, respectively.
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Definition 2.2. A symmetric linear relation S on H is said to be simple if there is no nontrivial
orthogonal decomposition of H = H1⊕H2 such that, in the corresponding orthogonal decomposition
S = S1 ⊕ S2, the relation S1 is symmetric on H1 and S2 is selfadjoint on H2.

The decomposition (2.2) for S = Ss ⊕ S∞ shows that a simple closed symmetric relation is
necessarily an operator. Recall (cf., e.g., [40]) that a closed symmetric linear relation S on a Hilbert
space H is simple if and only if H = span{Nλ(S∗) : λ ∈ C \ R }.

2.2. Unitary Relations on Krĕın Spaces

Recall that a signature operator j on a Hilbert space is a bounded linear operator such that
j = j∗ = j−1. A signature operator provides the Hilbert space with a Krĕın space structure with
the inner product (j · , ·). Let H and H be Hilbert spaces with signature operators jH and jH,
respectively, and denote the corresponding Krĕın spaces by (H, jH) and (H, jH). Then the adjoint
T [∗] of a linear relation T from the Krĕın space (H, jH) to the Krĕın space (H, jH) is given by
T [∗] = jHT ∗jH. In what follows, linear relations T : H → H are often regarded as subspaces of the
space H × H interpreted as the Krĕın space (H2, JH) with the fundamental symmetry

JH :=
( 0 −iIH

iIH 0

)

. (2.3)

Definition 2.3 [48]. A linear relation T from the Krĕın space (H, jH) to the Krĕın space (H, jH)
is said to be isometric if T−1 ⊂ T [∗] and unitary if T−1 = T [∗].

The following statements are due to Yu. L. Shmul’jan [48]. They can also be obtained directly
from the relation T [∗] = T−1 and from [15, Prop. 2.2].

Proposition 2.4. Let T be a unitary relation from the Krĕın space (H, jH) to the Krĕın space
(H, jH). Then

(i) T is closed and the inverse T−1 and the adjoint T [∗] are unitary, too;
(ii) dom T is closed if and only if ran T is closed ;
(iii) the following equalities hold :

ker T = (dom T )[⊥], mulT = (ran T )[⊥]. (2.4)

A unitary relation T : (H, jH) → (H, jH) can be multivalued, nondensely defined, and unbounded.
It is the graph of an operator if and only if its range is dense, and the operator need not be densely
defined or bounded; if it is bounded, it need not be densely defined. To distinguish classical unitary
operators from those in Definition 2.3 (see also [15, p. 10]), we use the following definition.

Definition 2.5. A unitary relation T from a Krĕın space H to a Krĕın space H is called
(i) a standard unitary operator if T belongs to [H,H];
(ii) a nonstandard unitary operator if T is a (single-valued) operator not belonging to [H,H].

Here is an example of a nonstandard bounded unitary operator.

Example 2.6. Let H be a Hilbert space, let L be a subspace of H, and let P be the orthogonal
projections of H onto L. Consider H×H and its subspace L×L as the Krĕın spaces equipped with
the fundamental symmetries JH and JL, respectively, as in (2.3). Define the operator T from H×H

to L × L by the rule
T =

{{(

f

h

)

,
(

Pf

h

)}

: f ∈ H, h ∈ L
}

.

Then, clearly, dom T = H × L, ker T = ker P × {0}, and T is bounded. It is easy to see that the
Krĕın space adjoint T [∗] : L×L → H×H coincides with T−1. Thus, T is a bounded unitary operator
which is not standard.

Corollary 2.7. Let T be a unitary relation from the Krĕın space (H, jH) to the Krĕın space
(H, jH). Then T ∈ [H,H] if and only if T−1 ∈ [H,H].

Proof. Let T ∈ [H,H]. Then domT = H and mul T = {0}, i.e., ranT−1 = H and ker T−1 = {0}.
Proposition 2.4 implies now that T−1 ∈ [H,H].
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Note that, for a unitary relation T from (H, jH) to (H, jH), both T and T−1 are operators if and
only if dom T = H and ran T = H. Moreover, in this case, dom T = H if and only if ran T = H.

Remark 2.8. An operator T from the Krĕın space (H, jH) to the Krĕın space (H, jH) is unitary
in the sense of M. G. Krĕın (Krĕın unitary) if dom T = H, ranT = H, and [Tf, Tf ]H = [f, f ]H,
f ∈ H (see [4, Chap. 2, Def. 5.1 and Cor. 5.8]). In this case, [Tf, Tg]H = [f, g]H, f, g ∈ H, i.e.,
T−1 ⊂ T [∗], and now it follows from domT = H and ran T = H that T−1 = T [∗]; cf. [15, Prop. 2.8].
Moreover, T ∈ [H,H], and then T−1 ∈ [H,H] by Corollary 2.7. Hence, a Krĕın unitary operator
is standard in the sense of Definition 2.5. Conversely, if T is standard unitary in the sense of
Definition 2.5, i.e., T−1 = T [∗] and T ∈ [H,H] (or, equivalently, T−1 ∈ [H,H]), then T is Krĕın
unitary.

Unitary relations between Krĕın spaces admit useful composition properties. We first present
a result concerning the adjoint of the composition (product) of linear relations if the domain or
the range of one of the relations is closed; note that Lemma 2.1 remains valid in the Krĕın space
situation.

Lemma 2.9. Let Kj, j = 0, 1, 2, 3, be Krĕın spaces, and let S : K1 → K2 be a closed relation. In
this case,

(i) if dom S is closed, then (SX)[∗] = X [∗]S[∗] for every linear relation X : K0 → K1 such that
ran X ⊂ dom S;

(ii) if ran S is closed, then (Y S)[∗] = S[∗]Y [∗] for every linear relation Y : K2 → K3 such that
dom Y ⊂ ran S.

Proof. (i) The inclusion (SX)[∗] ⊃ X [∗]S[∗] is always satisfied, cf. (ii) in Lemma 2.1. To prove
the reverse inclusion, take {f, g} ∈ (SX)[∗]; then

[g, h]K1 = [f, k]K3 for all {h, k} ∈ SX. (2.5)

Since the linear relation SX contains the set {{0, f0} : f0 ∈ mulS}, it follows from (2.5) that
[f, f0] = 0 for all f0 ∈ mulS, and thus f ∈ (mulS)[⊥] = domS[∗]. Since S is closed and dom S is
closed, the domain dom S[∗] is also closed by [15, Prop. 2.2]. Hence, f ∈ dom S[∗] and {f, f ′} ∈ S[∗]

for some f ′ ∈ K1. Now it suffices to show that {f ′, g} ∈ X [∗], because this yields {f, g} ∈ X [∗]S[∗].
Indeed, for each {h, u} ∈ X, there is a u′ ∈ K2 such that {u, u′} ∈ S, due to the condition
ran X ⊂ dom S. Then, for all {f, f ′} ∈ S[∗],

[g, h] − [f ′, u] = [g, h] − [f, u′]. (2.6)

Clearly, {h, u′} ∈ SX, and therefore (2.5) and (2.6) yield [g, h] = [f ′, u] for any {h, u} ∈ X. This
means that {f ′, g} ∈ X [∗]. Thus, (SX)[∗] ⊂ X [∗]S[∗].

(ii) This follows by applying (i) to the inverse (Y S)−1 = S−1Y −1; see also Lemma 2.1.

The following theorem treats the composition of two unitary relations; the result is needed below.

Theorem 2.10. Let K1, K2, and K3 be Krĕın spaces, and let the linear relations T : K1 → K2
and S : K2 → K3 be unitary. In this case,

(i) if
ran T ⊂ domS and domS is closed, (2.7)

then ST : K1 → K3 is unitary and dom ST = dom T ;
(ii) if

ranT ⊃ dom S and dom T is closed, (2.8)

then ST : K1 → K3 is unitary and ran ST = ran S;
(iii) if ran T = domS and ran S = K3, then the unitary relation ST : K1 → K3 is bounded and

single-valued (not necessarily densely defined);
(iv) if T ∈ [K1,K2] or S ∈ [K2,K3], then ST : K1 → K3 is unitary ;
(v) if T ∈ [K1,K2] and S ∈ [K2,K3], then ST is a unitary operator belonging to [K1,K3].
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Proof. (i) By the assumptions in formula (2.7) and by part (i) of Lemma 2.9, we have
(ST )[∗] = T [∗]S[∗] = T−1S−1 = (ST )−1

because S and T are unitary. Therefore, ST is unitary. The relation domST = dom T follows from
the assumption ran T ⊂ dom S.

(ii) This is an immediate consequence of Lemma 2.9; it can also be obtained from (i) by using
inverses.

(iii) If ranT = dom S and ranS = K3, then dom S and dom T are closed by Proposition 2.4 (ii).
Therefore, by part (ii), the relation ST : K1 → K3 is unitary and ranST = ran S = K3. Therefore,
ST is bounded and single-valued; cf. [15, Cor. 2.4].

(iv) If S ∈ [K2,K3] then dom S = K2 by definition. Hence, the relation ST is unitary by part (i).
On the other hand, if T ∈ [K1,K2], then dom T = K1 and ran T = K2, and now part (ii) shows that
ST is unitary.

(v) This is an obvious and well-known fact (see [4]).

The following examples show that, for infinite-dimensional spaces, unitary operators can be
unbounded and can form a family which is not a semigroup, i.e., the product of two unitary
operators need not be a unitary operator.

Example 2.11. Let K be a densely defined operator on a Hilbert space H. Define the block
operator matrix T by

T =
(

IH K
0 IH

)

. (2.9)

Then T is an injective operator, i.e., ker T = {0} and mulT = {0}. It is easy to see that T is closed
if and only if K is closed. The inverse of T is given by

T−1 =
(

IH −K
0 IH

)

(2.10)

and hence T is densely defined with dense range; in fact, domT = ran T = H ⊕ domK. Now we
regard H ⊕ H as the Krĕın space (H2, JH) with the fundamental symmetry JH, as in (2.3). Then

T [∗] =
(

IH −K∗

0 IH

)

. (2.11)

Identities (2.10) and (2.11) show that T is isometric (unitary) if and only if K is symmetric (self-
adjoint, respectively). Therefore, if K1 and K2 are two unbounded selfadjoint operators on H such
that K1 + K2 is not selfadjoint, then the composition T1T2 of the unitary operators T1 and T2,

T1T2 =
(

IH K1
0 IH

)(

IH K2
0 IH

)

=
(

IH K1 + K2
0 IH

)

,

is not a unitary operator on (H2, JH). Here both assumptions in (2.7) can fail to hold. This is the
case if, for instance, K1 and K2 are selfadjoint operators on H such that domK1 ∩ dom K2 = {0}.

Note that, if K1 is an unbounded selfadjoint operator on H and K2 = −K1, then ranT2 = domT1,
cf. (2.10), and domT1T2 = domT2. Now the composition T1T2 is not closed, and hence it cannot
be unitary. In this case, the first assumption in (2.7) and (2.8) is satisfied, whereas the other
assumption in (2.7) and (2.8) fails to hold.

2.3. Main Transform

It is convenient to interpret the Hilbert space H2 = H⊕H as a Krĕın space (H2, JH) whose inner
product is determined by the fundamental symmetry JH of the form (2.3). There is a useful and
important transform which gives a relationship between the subspaces of the Hilbert space (H⊕H)2

and linear relations from the Krĕın space (H2, JH) to (H2, JH) [15]. To recall this relationship, define
the linear mapping J from H2 ×H2 to (H ⊕H)2 by

J :
{( f

f ′
)

,
(

h

h′

)}

�→
{(

f

h

)

,
(

f ′

−h′

)}

, f, f ′ ∈ H, h, h′ ∈ H.

This mapping establishes a one-to-one correspondence between the (closed) linear relations
Γ: H2 → H2 and the (closed) linear relations ˜A on ˜H = H ⊕H by the rule

Γ �→ ˜A := J (Γ) =
{ {(

f

h

)

,
(

f ′

−h′

)}

:
{( f

f ′
)

,
(

h

h′

)}

∈ Γ
}

. (2.12)
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The mapping J plays a principal role and is referred to as the main transform. According to
[15, Prop. 2.10], the main transform J establishes a one-to-one correspondence between the con-
tractive, isometric, and unitary relations Γ from (H2, JH) to (H2, JH) and the dissipative, symmetric,
and selfadjoint relations ˜A on H ⊕H, respectively.

2.4. Nevanlinna Families

A family of linear relations M(λ), λ ∈ C \ R, on a Hilbert space H is called a Nevanlinna family if
(i) for every λ ∈ C+(C−), the relation M(λ) is maximal dissipative (accumulative, respec-

tively);
(ii) M(λ)∗ = M(λ̄), λ ∈ C \ R;
(iii) for some (and hence for all) μ ∈ C+(C−), the operator family (M(λ) + μ)−1(∈ [H]) is

holomorphic for all λ ∈ C+(C−).
By the maximality condition, each relation M(λ), λ ∈ C \ R, is necessarily closed. The class of all
Nevanlinna families in a Hilbert space is denoted by ˜R(H). If the multivalued part mulM(λ) of
M(·) ∈ ˜R(H) is nontrivial, then it does not depend on λ ∈ C \ R, and hence

M(λ) = Ms(λ) ⊕ M∞, M∞ = {0} × mulM(λ), λ ∈ C \ R, (2.13)

where Ms(λ) is a Nevanlinna family of densely defined operators on H� mulM(λ) (see [38]).
Clearly, if M(·) ∈ ˜R(H), then M∞ ⊂ M(λ) ∩ M(λ)∗ for all λ ∈ C \ R. The following subclasses

of the class ˜R(H) are useful:

R(H) =
{

M(·) ∈ ˜R(H) : mulM(λ) = {0}
}

;

Rs(H) =
{

M(·) ∈ ˜R(H) : M(λ) ∩ M(λ)∗ = {0} for all λ ∈ C \ R
}

;

Ru(H) =
{

M(·) ∈ ˜R(H) : M(λ) ̂+ M(λ)∗ = H2 for all λ ∈ C \ R
}

;

R[H] =
{

M(·) ∈ ˜R(H) : dom M(λ) = H for all λ ∈ C \ R
}

;

Rs[H] =
{

M(·) ∈ R[H] : ker Im M(λ) = {0} for all λ ∈ C \ R
}

;

Ru[H] =
{

M(·) ∈ Rs[H] : 0 ∈ ρ(Im M(λ)) for all λ ∈ C \ R
}

.

The subclasses of ˜R(H) can be equivalently defined by assuming the corresponding property of
M(λ) at a single point λ ∈ C \ R only. Moreover, it is easy to show that Ru[H] = Ru(H); see
[15] for further details. The Nevanlinna functions in Rs(H) and Ru[H] are said to be strict and
uniformly strict, respectively.

A pair {Φ,Ψ} of holomorphic [H]-valued functions on C+∪C− is said to be a Nevanlinna pair if
(N1) Im Φ(λ)∗Ψ(λ)/ Im λ � 0, λ ∈ C+ ∪ C−;
(N2) Ψ(λ̄)∗Φ(λ) − Φ(λ̄)∗Ψ(λ) = 0, λ ∈ C+ ∪ C−;
(N3) 0 ∈ ρ(Ψ(λ) ± iΦ(λ)), λ ∈ C±.

Two Nevanlinna pairs {Φ1,Ψ1} and {Φ2,Ψ2} are said to be equivalent if Φ2(λ) = Φ1(λ)χ(λ) and
Ψ2(λ) = Ψ1(λ)χ(λ) for some operator function χ(λ) ∈ [H] which is holomorphic and invertible on
C+ ∪ C−. If {Φ,Ψ} is a Nevanlinna pair, then the following kernel is nonnegative on C+ ∪ C−:

NΦΨ(λ, μ) =
Φ(μ)∗Ψ(λ) − Ψ(μ)∗Φ(λ)

λ − μ̄
, λ, μ ∈ C+ ∪ C−. (2.14)

The set of Nevanlinna families τ(λ) and the set of equivalence classes of Nevanlinna pairs {Φ,Ψ}
are in a one-to-one correspondence via the formula

τ(λ) = {Φ(λ),Ψ(λ)} := { {Φ(λ)h,Ψ(λ)h} : h ∈ H}. (2.15)

Moreover, the strict and uniformly strict Nevanlinna families are characterized by the conditions
0 /∈ σp(NΦΨ(λ, λ)) and 0 ∈ ρ(NΦΨ(λ, λ)) for some λ ∈ C \ R, respectively.
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3. BOUNDARY RELATIONS AND WEYL FAMILIES
3.1. Definitions and Basic Properties

Let S be a closed symmetric linear relation on the Hilbert space H. It is not assumed that the
defect numbers of S are equal or finite. A boundary relation for S∗ is defined as follows (cf. [15]).

Definition 3.1. Let H be a Hilbert space. A linear relation Γ: H2 �→ H2 is called a boundary
relation for S∗ if
(G1) dom Γ is dense in S∗ and the identity

(f ′, g)H − (f, g′)H = (h′, k)H − (h, k′)H (3.1)

holds for every { ̂f ,̂h}, {ĝ,̂k} ∈ Γ;
(G2) Γ is maximal, which means that, if {ĝ,̂k} ∈ H2 × H2 satisfies (3.1) for every { ̂f ,̂h} ∈ Γ,

then {ĝ,̂k} ∈ Γ.

Here ̂f = {f, f ′}, ĝ = {g, g′} ∈ dom Γ and ̂h = {h, h′}, ̂k = {k, k′} ∈ ran Γ.

Condition (3.1) in (G1) can be interpreted as an abstract Green’s identity. In the terminology
of Krĕın spaces, identity (3.1) means that Γ is an isometric relation from the Krĕın space (H2, JH)
to the Krĕın space (H2, JH) because

(JH
̂f , ĝ)H2 = (JĤh,̂k)H2 , { ̂f ,̂h}, {ĝ,̂k} ∈ Γ. (3.2)

The maximality condition (G2) ensures that a boundary relation Γ is in fact a unitary relation
from the Krĕın space (H2, JH) to the Krĕın space (H2, JH); in particular, it is closed and linear.
Conversely, if Γ: (H2, JH) → (H2, JH) is a unitary relation whose domain is dense in S∗, then Γ is
a boundary relation for S∗ (cf. [15]).

Note that the inverse relation Γ−1 : (H2, JH) → (H2, JH) is also unitary; see Proposition 2.4.
Therefore, in this case, Γ−1 can be interpreted as a boundary relation for ˜S∗ ⊂ H2 adjoint to the
closed symmetric relation

˜S := ker Γ−1 = mul Γ (⊂ H2). (3.3)

Let Γ be a boundary relation for S∗ and T = domΓ. According to [15, Prop. 2.12], the linear
relation T on H satisfies the condition

S ⊂ T ⊂ S∗, clos T = S∗. (3.4)

Recall that the eigenspaces Nλ(T ) and ̂Nλ(T ) for T are defined by (2.1). For any { ̂fλ,̂h}, {ĝμ,̂k} ∈ Γ
with ̂fλ ∈ ̂Nλ(T ) and ĝμ ∈ ̂Nμ(T ), one has

(λ − μ̄)(fλ, gμ)H = (h′, k)H − (h, k′)H, λ, μ ∈ C \ R, (3.5)

which follows from identity (3.1). Hence, the subspace ̂Nλ(T ) is positive in the Krĕın space (H2, JH)
for λ ∈ C+ and negative for λ ∈ C−.

Proposition 3.2. Let Γ: H2 �→ H2 be a boundary relation for S∗. In this case,
(i) n±(S) � dimH;
(ii) if n±(S) < ∞, then dimH− n±(S) = dim mulΓ;
(iii) if dimH < ∞, then n+(S) = n−(S).

Proof. (i) Let ˜A = J (Γ) be the main transform of Γ. Then n±(S) = n±(˜S) by [15, Lemma
2.14], where ˜S = mul Γ ⊂ H2; cf. (3.3). This implies (i).

(ii) If n±(S) < ∞, or, equivalently, n±(˜S) < ∞, then dim mulΓ = dim ˜S = dimH− dim n±(˜S),
where the latter equality holds because dim ˜S in H2 is equal to dim ran(˜S − λ) in H for any
λ ∈ C \ R.

(iii) If dimH < ∞, then clearly n+(˜S) = n−(˜S), and thus n+(S) = n−(S).

Definition 3.3. A boundary relation Γ: H2 �→ H2 of S∗ is said to be minimal if
H = Hmin := span{Nλ(T ) : λ ∈ C+ ∪ C− }.
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Definition 3.4. The Weyl family M(·) of S corresponding to a boundary relation Γ: H2 �→ H2

is defined by M(λ) := Γ(̂Nλ(T )), i.e.,

M(λ) :=
{

̂h ∈ H2 : { ̂fλ,̂h} ∈ Γ for some ̂fλ = {fλ, λfλ} ∈ H
2
}

, (3.6)

where λ ∈ C \ R. If M(·) is operator-valued, it is called the Weyl function of S corresponding to
the boundary relation Γ.

Definition 3.5. The γ-field γ(·) of S corresponding to a boundary relation Γ: H2 → H2 is
defined by

γ(λ) :=
{

{h, fλ} ∈ H × H : { ̂fλ,̂h} ∈ Γ for some ̂fλ = {fλ, λfλ} ∈ H
2
}

, (3.7)

where λ ∈ C \ R and the symbol γ̂(λ) (λ ∈ C \ R) stands for

γ̂(λ) :=
{

{h, ̂fλ} ∈ H × H
2 : {h, fλ} ∈ γ(λ), ̂fλ = {fλ, λfλ} ∈ H

2
}

. (3.8)

Assign to Γ the following linear relations which are not necessarily closed:

Γ0 =
{

{ ̂f , h} : { ̂f ,̂h} ∈ Γ, ̂h = {h, h′}
}

, Γ1 =
{

{ ̂f , h′} : { ̂f ,̂h} ∈ Γ, ̂h = {h, h′}
}

. (3.9)

It is clear that dom M(λ) = Γ0(̂Nλ(T )) ⊂ ranΓ0 and ranM(λ) = Γ1(̂Nλ(T )) ⊂ ran Γ1. If the
boundary relation Γ is single-valued, then {H,Γ0,Γ1} is referred to as a boundary triplet associated
with the boundary relation Γ: H2 �→ H2. In this case, the Weyl family corresponding to the
boundary triplet {H,Γ0,Γ1} can be also defined by the relation

Γ1({fλ, λfλ}) = M(λ)Γ0({fλ, λfλ}), {fλ, λfλ} ∈ T. (3.10)

The γ-field γ(·) associated with the boundary relation Γ: H2 → H2 is the first component of the
mapping γ̂(λ) in (3.8). Note that

γ̂(λ) := (Γ0� ̂Nλ(T ))−1, λ ∈ C \ R,

is a linear mapping from Γ0(̂Nλ(T )) = dom M(λ) onto ̂Nλ(T ); γ̂(λ) is single-valued by (3.5).
Hence, the γ-field is a single-valued mapping from domM(λ) onto Nλ(T ) and satisfies the relation
γ(λ)Γ0

̂fλ = fλ for any ̂fλ ∈ ̂Nλ(T ).

3.2. Realization Theorem

Identity (3.5) implies that every Weyl family is a Nevanlinna family. In [15], the converse assertion
was also proved: every Nevanlinna family can be realized as the Weyl family of a minimal boundary
relation.

Theorem 3.6 [15]. Let Γ: H2 → H2 be a boundary relation for S∗. Then the corresponding
Weyl family M(·) belongs to the class ˜R(H).

Conversely, if M(·) belongs to the class ˜R(H), then there exists a minimal boundary relation
whose Weyl function coincides with M(·).

Due to Theorem 3.6, the subclasses of ˜R(H) defined in Section 2 can be characterized in geometric
terms by using boundary relations.

Proposition 3.7 [15]. Let Γ: H2 → H2 be a boundary relation for S∗ with the Weyl family
M(λ) = Γ(̂Nλ(T )). In this case,

(i) M(·) ∈ R(H) if and only if mulΓ ∩ ({0} × H) = {0};
(ii) M(·) ∈ Rs(H) if and only if ran Γ is dense in H2;
(iii) M(·) ∈ R[H] if and only if Γ0(̂Nλ(T )) = H, λ ∈ C \ R;
(iv) M(·) ∈ Rs[H] if and only if mulΓ0 = {0} and Γ0(̂Nλ(T )) = H, λ ∈ C \ R;
(v) M(·) ∈ Ru[H] if and only if ranΓ = H2.
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The case of mul Γ 
= {0} can now be specified in more detail.

Proposition 3.8. Let Γ: H2 → H2 be a boundary relation for S∗, and let M(·) = {Φ(·),Ψ(·)}
be the corresponding Weyl family. Then

dim mulΓ = dim M(λ) ∩ M(λ)∗ = dimker NΦ,Ψ(λ, λ), λ ∈ C \ R. (3.11)

In particular, mulΓ = {0} ⇐⇒ M ∈ Rs(H) ⇐⇒ ker NΦ,Ψ(λ, λ) = {0}.

Proof. Define the linear mapping T (λ) from H to H2 by

T (λ) =
(

Φ(λ)

Ψ(λ)

)

, λ ∈ C \ R.

Then M(λ) = T (λ)H. If H0 := ker NΦ,Ψ(λ0, λ0) 
= 0 with a chosen λ0 ∈ C \ R, then T (λ0)H0 is
the isotropic subspace of the space T (λ0)H regarded as a subspace of the Krĕın space (H2, JH).
Therefore, T (λ0) ker NΦ,Ψ(λ0, λ0) = M(λ0) ∩ M(λ0)∗. According to [15, Lemma 4.1], we have
M(λ0) ∩ M(λ0)∗ = mulΓ, and this yields the equalities in (3.11).

3.3. Linear Transformations of Boundary Relations

Let H and K be Hilbert spaces and let W be a linear relation from the Hilbert space H2 = H⊕H
to the Hilbert space K2 = K⊕K. For any linear relation Θ on H, the formula

W [Θ] =
{

̂k ∈ K2 : {̂h,̂k} ∈ W, ̂h ∈ Θ
}

(3.12)

defines a linear relation W [Θ] on K.

Definition 3.9. The linear relation W [Θ] on K defined by (3.12) is called the Shmul’yan trans-
form of Θ on H induced by the linear relation W : H2 → K2.

If W is a standard unitary operator, then some known properties can readily be recovered,
cf. [39, 49].

Proposition 3.10. Let W be a standard unitary operator from the Krĕın space (H2, JH) onto
the Krĕın space (K2, JK). Let Θ be a linear relation on H. Then

(i) W [Θ∗] = W [Θ]∗;
(ii) Θ is maximal dissipative if and only if W [Θ] is maximal dissipative;
(iii) Θ is maximal symmetric if and only if W [Θ] is maximal symmetric;
(iv) Θ is selfadjoint if and only if W [Θ] is selfadjoint.

If W is a standard unitary operator from H2 onto K2, then the Shmul’yan transform is usu-
ally written out componentwise. In this case, W is bounded with bounded inverse, and it can be
represented in the block form

W =
(

W00 W01
W10 W11

)

, Wij ∈ [H,K], i, j = 0, 1. (3.13)

If Θ is a linear relation on H, then W [Θ] in (3.12) becomes

W [Θ] = { {W00h + W01h
′,W10h + W11h

′} : {h, h′} ∈ Θ }. (3.14)

Clearly, the Shmul’yan transform W [Θ] is contained in the linear-fractional transformation of Θ
given by

Λ = (W10 + W11Θ)(W00 + W01Θ)−1 := { {W00h + W01h
′,W10h + W11h

′′} : {h, h′}, {h, h′′} ∈ Θ }.
(3.15)

In fact, the following equality holds:

(W10 + W11Θ)(W00 + W01Θ)−1 = W [Θ] ̂+ {0,W11(mulΘ)}. (3.16)

Hence, if Θ is a linear relation with W11(mul Θ) = {0} and, in particular, if Θ is an operator, then
the linear relations in (3.14) and in (3.15) coincide.
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Proposition 3.11. Let Γ: H2 → H2 be a boundary relation for S∗ with γ-field γ(λ) and Weyl
family M(λ). Let W = (Wij)1i,j=0 be a standard unitary operator on the Krĕın space (H2, JH).
Then

(i) the composition WΓ: H2 → H2 is a boundary relation for S∗;
(ii) the γ-field γW (λ) associated with WΓ is given by

γW (λ) =
{

{W00h + W01h
′, γ(λ)h} : {h, h′} ∈ M(λ)

}

, λ ∈ C \ R; (3.17)

(iii) the corresponding Weyl family MW (λ) is given by the Shmul’yan transform

MW (λ) =
{

{W00h + W01h
′,W10h + W11h

′} : {h, h′} ∈ M(λ)
}

, λ ∈ C \ R. (3.18)

Proof. (i) This statement is immediate from Theorem 2.10 and [15, Prop. 3.5] since ker WΓ =
ker Γ = S.

(ii) According to (3.7), the (graph of) the γ-field γW (λ) corresponding to WΓ is the set of
elements given by

{

{k, fλ} ∈ H × H : { ̂fλ,̂k} ∈ WΓ
}

=
{

{k, fλ} ∈ H × H : ̂k = Ŵh, { ̂fλ,̂h} ∈ Γ
}

,

where λ ∈ C \ R, which leads to (3.17).
(iii) By Definition 3.4, the Weyl family MW (·) of S corresponding to the boundary relation

ΓW : H2 �→ H2 is

MW (λ) =
{

̂k ∈ H2 : { ̂fλ,̂k} ∈ WΓ
}

=
{

̂k ∈ H2 : ̂k = Ŵh, { ̂fλ,̂h} ∈ Γ
}

,

where λ ∈ C \ R, and this leads to (3.18).

Remark 3.12. If W = JH, then the boundary relation WΓ becomes

Γ� := ΓJH =
{

{ ̂f , JĤh} : { ̂f ,̂h} ∈ Γ
}

, (3.19)

and is called the transposed boundary relation. As follows from (3.18), the corresponding Weyl
family M�(·) for Γ� coincides with −M(·)−1.

3.4. Ordinary Boundary Triplets

The notion of boundary triplet (or a boundary value space) was introduced for a densely defined
symmetric operator by A. N. Kochubei and V. M. Bruk (see [27, 28] and the references therein).
We present the corresponding definition for a nondensely defined operator.

Definition 3.13. Let S be a symmetric operator on a Hilbert space H with defect indices
n±(S). A triple Π = {H,Γ0,Γ1} formed by a Hilbert space H and two linear mappings Γ0 and Γ1

from S∗ to H is referred to as an ordinary boundary triplet for S∗ if
(BT1) the abstract Green’s identity holds,

(f ′, g) − (f, g′) = (Γ1
̂f,Γ0ĝ)H − (Γ0

̂f,Γ1ĝ)H, (3.20)

for all ̂f = {f, f ′}, ĝ = {g, g′} ∈ S∗;
(BT2) the linear mapping Γ := {Γ0,Γ1} : S∗ → H2 is surjective.

Simple observations (see [15, Prop. 5.3]) imply the following statement.

Proposition 3.14. The following statements are equivalent :
(i) a triple {H,Γ0,Γ1} is an ordinary boundary triplet for S∗;
(ii) Γ = {Γ0,Γ1} : H2 �→ H2 is a boundary relation for S∗ with ran Γ = H2;
(iii) the corresponding Weyl family M(·) belongs to Ru[H].

The term ordinary boundary triplet is used to distinguish boundary triplets occurring in Defini-
tion 3.13 from those corresponding to single-valued boundary relations (see Subsection 3.1).

A linear relation ˜A is said to be an intermediate extension of S if S ⊂ ˜A ⊂ S∗. Ordinary boundary
triplets provide a tool for describing all intermediate extensions of S. As is well known [19, 41],
the set of all intermediate extensions of A in H admits the parametrization

˜AΘ := { ̂f ∈ A∗ : Γ ̂f ∈ Θ} = ker(Γ1 − ΘΓ0), (3.21)
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where Θ ranges over the set of all linear relations on H. Moreover, in this case, the linear relation
˜AΘ is closed (symmetric, selfadjoint) if and only if the linear relation Θ is closed (symmetric,
selfadjoint, respectively).

The definitions of the Weyl function M(·) and the γ-field γ(·) corresponding to the ordinary
boundary triplet Π = {H,Γ0,Γ1} can be rewritten in a simpler form,

γ̂(λ) := (Γ0� ̂Nλ)−1, γ(λ) := π1(Γ0� ̂Nλ)−1, M(λ) = Γ1γ̂(λ), (3.22)

with λ ∈ ρ(A0). Here ̂Nλ := ̂Nλ(S∗), and the symbol π1 stands for the projection to the first
component of H⊕H. The Weyl function M(·) and the γ-field γ(·) satisfy the following identities:

γ(λ) = [I + (λ − μ)(A0 − λ)−1]γ(μ), λ, μ ∈ C \ R, (3.23)

M(λ) = M(μ)∗ + (λ − μ̄)γ(μ)∗[I + (λ − μ)(A0 − λ)−1]γ(μ), λ, μ ∈ C \ R. (3.24)

For an ordinary boundary triplet, the resolvent of an intermediate extension ˜A of A can be
expressed in terms of the corresponding Weyl function.

Proposition 3.15 [21]. Let {H,Γ0,Γ1} be an ordinary boundary triplet for S∗, let M(·) be the
corresponding Weyl function, let Θ be a linear relation on H, and let λ ∈ ρ(A0). In this case,
λ ∈ ρ( ˜AΘ) if and only if 0 ∈ ρ(Θ − M(λ)), and the resolvent of ˜AΘ is given by

( ˜AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)(Θ − M(λ))−1γ(λ̄)∗. (3.25)

The fact that analytic properties of uniformly strict Nevanlinna functions, i.e., M(·) ∈ Ru[H],
are much simpler than those of general Nevanlinna families M(·) ∈ ˜R(H) reflects the fact that
general boundary relations are much more complicated objects than ordinary boundary triplets;
cf. Proposition 3.14. Many standard geometric and operator-theoretic properties known for ordinary
boundary triplets are not shared by general boundary relations.

3.5. Boundary Relations Whose Weyl Functions Belong to the Class R[H]

In this subsection, a special attention is paid to the boundary relations whose Weyl families
belong to the class R[H]. A purely geometric characterization of this class of boundary relations is
given in the next proposition.

Proposition 3.16. Let S be a closed relation on a Hilbert space H. Let H be a Hilbert space,
and let Γ: H2 → H2 be a (possibly multivalued) linear relation with domΓ = S∗ such that

(B1) Green’s identity (3.1) holds;
(B2) ran Γ0 = H;
(B3) A0 := ker Γ0 is a selfadjoint relation on H.

In this case, ker Γ = S and Γ: H2 → H2 is a boundary relation for S∗ for which

Γ0(̂Nλ(T )) = H, λ ∈ C \ R. (3.26)

Further, every closed isometric linear relation Γ: H2 → H2 satisfying dom Γ = S∗ and (3.26) is a
boundary relation for S∗ which satisfies conditions (B1)–(B3).

If conditions (B1)–(B3) are satisfied, then S has equal defect numbers, and the corresponding
Weyl function belongs to the class R[H]. Moreover, every R[H]-function is the Weyl function of
some boundary relation Γ: H2 → H2 with properties (B1)–(B3).

Proof. The proof of the first statement was given in [15, Prop. 5.9].
Now assume that Γ: H2 → H2 with dom Γ = S∗ is a closed isometric linear relation satisfy-

ing (3.26). Let { ̂fλ,̂h}, {ĝλ̄,̂k} ∈ Γ with

̂fλ =
(

fλ

λfλ

)

∈ ̂Nλ(T ), ĝλ̄ =
(

gλ̄

λ̄gλ̄

)

∈ ̂Nλ̄(T ), ̂h =
(

h

h′

)

, ̂k =
(

k

k′

)

∈ H2,

let M(λ) = Γ(̂Nλ(T )), and let Γ0, Γ1 be as in (3.9). Then, in view of (3.5), we have

0 = (λfλ, gλ̄)H − (fλ, λ̄gλ̄)H = (h′, k)H − (h, k′)H, λ ∈ C \ R.
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Since ̂h ∈ M(λ) and ̂k ∈ M(λ̄) are arbitrary, we can conclude that M(λ) ⊂ M(λ̄)∗. Assump-
tion (3.26) implies that dom M(λ) = domM(λ̄) = H. Hence, M(λ̄)∗ (and thus M(λ) as well) is
a bounded operator, and the relation M(λ) = M(λ̄)∗ holds for all λ ∈ C \ R. Since the operator
M(λ) is dissipative (accumulative) for λ ∈ C+ (λ ∈ C−), this implies that

ran(Γ(̂Nλ) + λ) = ran(M(λ) + λ) = H, λ ∈ C \ R.

Therefore, by [15, Prop. 3.6], Γ: H2 → H2 is a boundary relation for S∗.

Moreover, H = Γ0(̂Nλ(T )) ⊂ ran Γ0, and thus ran Γ0 = H, i.e., (B2) holds. Property (B3) is also
obtained from Γ0(Nλ(T )) = H by using [15, Prop. 4.15]. Condition (B1) is clearly valid.

The fact that every R[H]-function is the Weyl function of some boundary relation Γ: H2 → H2

satisfying the conditions (B1)–(B3) follows from Theorem 3.6 and Proposition 3.7. Finally, property
(B3) implies that the defect numbers of S = ker Γ ⊂ A0 = A∗

0 are equal.

Recall that, for a boundary relation Γ: H2 → H2 satisfying conditions (B1)–(B3), the operator
function γ(λ) = π1(Γ0� ̂Nλ(T ))−1 : H → Nλ(T )
is bounded and single-valued for every λ ∈ C \ R, see [15]. Further, the Weyl function M(·) and
the γ-field γ(·) satisfy identities (3.23) and (3.24). Let E(t) be the spectral family of A0, and let
P = E(∞) be the orthogonal projection onto dom A0. Then (3.24) leads to the following integral
representation of M(λ):

(M(λ)h, h) = ah + bhλ +
∫

R

( 1
t − λ

− t

t2 + 1

)

dσh(t), h ∈ H, (3.27)

where ah =(ReM(i)h, h)H , bh =((I−P )γ(i)h, γ(i)h), and dσh(t)=(t2+1)d(E(t)Pγ(i)h, Pγ(i)h)H .
Representation (3.27) leads to the following characterization (which is one of the basic tools below).
It can be derived from results in [15]; for completeness, a more immediate proof is presented here.

Proposition 3.17. Let S be a symmetric operator on H. Let Γ: H2 → H2 be a boundary relation
for S∗ satisfying conditions (B1)–(B3), and let M(λ) be the corresponding Weyl function. Moreover,
let H0 = mul Γ0, A0 = ker Γ0, and T = dom Γ. Then

(i) mulA0 = {0} if and only if

lim
y→∞

(M(iy)h, h)H/y = 0, h ∈ H; (3.28)

(ii) mulT = {0} if and only if M satisfies condition (3.28) and

lim
y↑∞

y Im
(

M(iy)h, h
)

= ∞, h ∈ H �H0. (3.29)

Proof. (i) It follows from representation (3.27) that

lim
y→∞

(M(iy)h, h)H(iy) = ‖(I − P )γ(i)h‖2
H = ‖(I − P )γ(μ)h‖2

H, μ ∈ C \ R. (3.30)

Since A0 is a selfadjoint extension of S and ran γ(μ) = Nμ(T ) is dense in Nμ(S∗) (see Lemma 5.1,
[15, Lemma 2.14]), it follows that S =

{

{f, g} ∈ A0 : (g − μ̄f, γ(μ)) = 0
}

and, in particular,

mulS =
{

g ∈ mulA0 : (g, γ(μ)) = (g, (I − P )γ(μ)) = 0
}

. (3.31)

Hence, mulA0 = mulS if and only if (I−P )γ(μ) = 0, which is equivalent to (3.28) by (3.30). Thus,
(i) follows from the assumption mulS = {0}.

(ii) Under the assumption (3.28), the limit in (3.29) acquires the form

lim
y↑∞

y Im
(

M(iy)h, h
)

=
∫

R

(t2 + 1) d‖Etγ(i)h‖2
H. (3.32)

Since ker γ(μ) = mul Γ0 by (3.7), the restriction of the mapping γ(i) to H�H0 is injective. Hence,
the limit in (3.32) is finite for some h ∈ H�H0, h 
= 0, if and only if

Ni(T ) ∩ dom A0 = (A0 − λ)−1(mul T )

is nontrivial. For the proof of the last relation, see [15, Prop. 4.20].
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The boundary relations with additional properties (B1)–(B3) are invariant under a special class of
transforms, cf. Proposition 3.11. Let B ∈ [H]. Assume that G ∈ [H] is invertible and BG = (BG)∗.
Define the block operator ˜W by

˜W =
(

G−1 0
B G∗

)

with BG = (BG)∗. (3.33)

It can readily be seen that ˜W is a standard unitary operator in H2.

Proposition 3.18. Let Γ: H2 → H2 be a boundary relation for S∗ which satisfies conditions
(B1)–(B3), let γ(λ) and M(λ) be the corresponding γ-field and the Weyl function, respectively, and
let ˜W ∈ [H⊕H] be given by (3.33). Then

(i) the transform ˜Γ = ˜WΓ of Γ given by

˜Γ =
{{

̂f,
(

G−1h
Bh + G∗h′

)}

:
{

̂f,̂h
}

∈ Γ
}

, (3.34)

is a boundary relation for S∗ with dom ˜Γ = dom Γ satisfying conditions (B1)–(B3);
(ii) the γ-field and the Weyl function of ˜Γ are given by

γ̃(λ) = γ(λ)G, ˜M(λ) = BG + G∗M(λ)G (∈ [H]), λ ∈ C \ R. (3.35)

Proof. (i) By Proposition 3.11 (i), ˜Γ = ˜WΓ: H2 → H2 is a boundary relation for S∗ with
dom ˜Γ = dom Γ and ker ˜Γ = ker Γ. Clearly, ˜Γ admits a representation of the form (3.34). Since
ran Γ0 = H and G ∈ [H] is invertible, the relation ran ˜Γ0 = H holds and ker ˜Γ0 = ker Γ0 is
selfadjoint. Hence, ˜Γ satisfies conditions (B1)–(B3).

(ii) By Proposition 3.11 and (3.33), the Weyl function ˜M(λ) of ˜Γ is given by

˜M(λ) =
{

{G−1h,Bh + G∗h′} : {h, h′} ∈ M(λ)
}

(3.36)

=
{

{k,BGk + G∗M(λ)Gk} : h = Gk ∈ dom M(λ) = H
}

= BG + G∗M(λ)G,

where BG = (BG)∗. Similarly, for the γ-field γ̃(λ) of ˜Γ, relations (3.17) and (3.33) yield

γ̃(λ) =
{

{G−1h, γ(λ)h} : {h, h′} ∈ M(λ)
}

=
{

{k, γ(λ)Gk} : h = Gk ∈ dom M(λ) = H
}

.

Hence, γ̃(λ) acquires the form appearing in (3.35).

Remark 3.19. If the transposed boundary relation Γ� satisfies (B1)–(B3), then the corre-
sponding Weyl family M�(·) = −M(·)−1 is single-valued and belongs to the class R[H].

Up to this point, the boundary relations Γ: (H2, JH) → (H2, JH) satisfying the conditions
(B1)–(B3) are multivalued in general. Let us briefly recall the single-valued case; cf. [15].

Definition 3.20 [21]. If a boundary relation Γ: (H2, JH) → (H2, JH) is single-valued and satisfies
conditions (B1)–(B3), then the triplet {H,Γ0,Γ1} is called a generalized boundary triplet.

The following assertion results from Proposition 3.7 and Proposition 3.16.

Corollary 3.21 [21]. A single-valued boundary relation Γ = {Γ0,Γ1} : H2 �→ H2 corresponds
to a generalized boundary triplet {H,Γ0,Γ1} if and only if the corresponding Weyl function M(·)
belongs to the class Rs[H].

In the case of a generalized boundary triplet, the condition (3.29) in Proposition 3.17 can be
simplified as follows:

lim
y↑∞

y Im
(

M(iy)h, h
)

= ∞, h ∈ H. (3.37)
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4. WEYL FUNCTIONS FOR INTERMEDIATE EXTENSIONS

Some results of [14] on intermediate extensions for ordinary boundary triplets are extended
in this section to the class of boundary relations satisfying properties (B1)–(B3) introduced in
Subsection 3.5 (see Proposition 3.16). Although many formulas are similar, a more careful treatment
is needed, since the boundary mapping Γ is now unbounded in general and can be multivalued.
For this reason, the proofs are different here and use compositions, where a bounded nonstandard
unitary operator is applied to a boundary relation Γ satisfying (B1)–(B3).

Let S be a closed symmetric operator on a separable Hilbert space H, and let Γ : H2 → H2 be a
boundary relation for S∗ satisfying conditions (B1)–(B3), and thus the corresponding Weyl family
M(λ) belongs to the class R[H]. The purpose is to associate intermediate symmetric extensions
H of S to different types of Nevanlinna functions (say, to linear combinations of Mij , to Schur
complements, and to compressions of linear-fractional transformations of M(λ)), which are obtained
as block transforms of the operator matrix representation of M(λ) in

H = H1 ⊕H2, M(λ) = (Mij(λ))2i,j=1. (4.1)

Let πj be the orthogonal projection taking H onto Hj , j = 1, 2. Consider the linear relations

P(j) =
{{(

h
h′

)

,
(

h
πjh

′
)}

: h ∈ Hj , h′ ∈ H
}

, j = 1, 2, (4.2)

which are nonstandard unitary operators from (H2, JH) to (H2
j , JHj

) (cf. Example 2.6). In general,
it is unclear whether or not P(j) ◦ Γ is a unitary relation if ran Γ � domP(j) = Hj ×H (cf. The-
orem 2.10). However, if Γ : H2 → H2 satisfies conditions (B1)–(B3), it turns out that P(j) ◦ Γ is a
unitary relation from (H2, JH) to (H2

j , JHj
), j = 1, 2.

Proposition 4.1. Let Γ: H2 → H2 be a boundary relation for S∗ satisfying conditions
(B1)–(B3), let γ(λ) be the corresponding γ-field, and let the corresponding Weyl function M(λ)
be decomposed as in (4.1). Then

(i) the linear relation H(1) given by

H(1) =
{

̂f ∈ S∗ :
{

̂f,
( 0

h′

)}

∈ Γ, π1h
′ = 0

}

(4.3)

is closed and symmetric on H and has equal defect numbers;
(ii) the linear relation Γ(1) : H2 → H2

1 given by

Γ(1) := P(1) ◦ Γ =
{{

̂f,
(

h
π1h

′

)}

:
{

̂f,
(

h
h′

)}

∈ Γ, π2h = 0
}

(4.4)

is a boundary relation for H(1)∗ satisfying conditions (B1)–(B3);
(iii) the domain T1 := domΓ(1) is dense in H(1)∗ and

T (1) =
{

̂f ∈ S∗ : { ̂f ,̂h} ∈ Γ, π2h = 0
}

; (4.5)

(iv) the corresponding γ-field γ1(λ) : H1 → H and the Weyl function M1(λ) ∈ [H1] are given by
γ1(λ) = γ(λ)�H1, M1(λ) = M11(λ), λ ∈ C \ R. (4.6)

Proof. (i) & (ii) By definition, Γ(1) is a multivalued mapping from H2 to H2
1. It satisfies Green’s

identity (3.1) since (f ′, g)H − (f, g′)H = (h′, k)H − (h, k′)H = (π1h
′, k)H − (h, π1k

′)H for any
{ ̂f ,̂h}, {ĝ,̂k} ∈ Γ with h, k ∈ H1. Property (B2) of Γ implies that ran Γ(1)

0 = H1. Moreover, it
follows from property (B3) of Γ that ker Γ(1)

0 = ker Γ0 = A0 is selfadjoint. Due to Proposition 3.16,
Γ(1) is a boundary relation for H(1)∗ having properties (B1)–(B3).

Since Γ(1) is unitary, H(1) = ker Γ(1) is closed and symmetric. The description of H(1) in (4.3)
is immediate from the definition of Γ(1) in (ii).

(iii) The description of T1 = dom Γ(1) in (4.5) is clear from the definition of Γ(1) in (i) because
T (1) is dense in H(1)∗; equivalently, the identity T (1)∗ = ker Γ(1) = H(1) holds by the definition of
boundary relations.
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(iv) By Proposition 3.16 (cf. [15, Prop. 5.9]), conditions (B1)–(B3) imply that
Γ0(̂Nλ(T )) = H, Γ(1)

0 (̂Nλ(T (1)) = H1 for all λ ∈ C \ R. (4.7)
Hence, dom γ̂(λ) = H and dom γ̂1(λ) = H1, and the formulas

γ(λ) =
{

{h, ̂fλ} : { ̂fλ,̂h} ∈ Γ
}

, γ1(λ) =
{

{h, ̂fλ} : { ̂fλ,̂h} ∈ Γ, h ∈ H1

}

show that these single-valued mappings satisfy the relation γ1(λ) = γ(λ)�H1. Moreover, (4.7) yields
M1(λ) ∈ [H1] and M(λ) ∈ [H], and thus M1(λ) =

{

̂h ∈ H2
1 : { ̂fλ,̂h} ∈ Γ(1)

}

=
{

{h, π1h
′} ∈ H2 :

{ ̂fλ,̂h} ∈ Γ, h ∈ H1

}

= π1M(λ)�H1. This completes the proof.

Replacing H1 by H2 in Proposition 4.1, we obtain the following corollary.

Corollary 4.2. Let Γ: H2 → H2, γ(λ), and M(λ) be as in Proposition 4.1. Then
(i) the linear relation H(2) given by

H(2) =
{

̂f ∈ S∗ :
{

̂f,
( 0

h′

)}

∈ Γ, π2h
′ = 0

}

(4.8)

is closed and symmetric on H and has equal defect numbers;
(ii) the linear relation Γ(2) : H2 → H2

2 given by

Γ(2) := P(2) ◦ Γ =
{{

̂f,
(

h
π2h

′

)}

:
{

̂f,
(

h
h′

)}

∈ Γ, π1h = 0
}

(4.9)

is a boundary relation for H(2)∗ satisfying conditions (B1)–(B3);
(iii) the domain T (2) := dom Γ(2) is dense in H(2)∗ and

T (2) =
{

̂f ∈ S∗ : { ̂f ,̂h} ∈ Γ, π1h = 0
}

; (4.10)
(iv) the corresponding γ-field γ2(λ) : H2 → H and the Weyl function M2(λ) ∈ [H2] are given by

γ2(λ) = γ(λ)�H2, M2(λ) = M22(λ), λ ∈ C \ R. (4.11)

The next corollary concerning Schur complements of the Weyl function is of independent interest.

Corollary 4.3. Let Γ: H2 → H2 be a boundary relation for S∗ such that Γ, Γ�, and
(

Γ(2)
)�

(see (3.19)) satisfy (B1)–(B3). Decompose the corresponding Weyl function M(λ) as in (4.1). Then
(i) the linear relation S(1) given by

S(1) =
{

̂f ∈ S∗ :
{

̂f,
(

h
0

)}

∈ Γ, π1h = 0
}

(4.12)

is closed and symmetric on H and has equal defect numbers;

(ii) the linear relation Γ′ :=
(

P(1) ◦ Γ�
)�

=
{{

̂f,
(

π1h
h′

)}

:
{

̂f,
(

h
h′

)}

∈ Γ, π2h
′ = 0

}

is a

boundary relation for S(1)∗ satisfying conditions (B1)–(B3);
(iii) the corresponding Weyl function M (1)(λ) ∈ [H1] is given by

M (1)(λ) = M11(λ) − M12(λ)M22(λ)−1M21(λ), λ ∈ C \ R. (4.13)
Proof. By assumption and by Proposition 3.16, M(·) and M(·)−1 belong to the class R[H], and

M(·)−1 has the block representation M(·)−1 =
(

(M(·)−1)ij

)2

i,j=1
. Since

(

Γ(2)
)�

satisfies (B1)–(B3),
we see by Proposition 3.16 that −M22(·)−1 belongs to the class R[H2]. By the Frobenius formula,

(

M(λ)−1
)

11
=

(

M11(λ) − M12(λ)M22(λ)−1M21(λ)
)−1 ∈ [H1]. (4.14)

Apply Proposition 4.1 to the transposed boundary relation Γ�. The composition P(1) ◦ Γ� is
unitary and satisfies (B1)–(B3), and the corresponding Weyl function coincides with −

(

M(·)−1
)

11
;

see (4.14). To complete the proof, it remains to show that the transposed boundary relation
(

P(1) ◦ Γ�)�
satisfies (B1)–(B3). Since

(

P(1) ◦ Γ�)�
is unitary, it is closed and isometric. Fur-

ther, the corresponding Weyl function M (1)(λ) =
(

M(·)−1
)−1

11
= M11(λ)−M12(λ)M22(λ)−1M21(λ)

belongs to the class R[H1], which shows (iii) and proves that condition (3.26) is satisfied. Assertion
(ii) follows now from Proposition 3.16, whereas (i) is immediate from part (i) of Proposition 4.1.
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Proposition 4.4. Let Γ : H2 → H2 be a boundary relation for S∗ which satisfies (B1)–(B3), let
γ(λ) be the corresponding γ-field, and let the vectors h = h1 ⊕ h2, h′ = h′

1 ⊕ h′
2 ∈ H1 ⊕H2 and the

corresponding Weyl function M(λ) be decomposed as in (4.1). Then, for every G ∈ [H2,H1],
(i) the linear relation HG defined by

HG =
{

̂f ∈ S∗ : { ̂f ,̂h} ∈ Γ, h = 0, h′
2 = −G∗h′

1

}

(4.15)
is closed and symmetric on H and has equal defect numbers;

(ii) the linear relation ΓG : H2 → H2
2 given by

ΓG =
{{

̂f ,
(

h2
G∗h′

1 + h′
2

)}

:
{

̂f,̂h
}

∈ Γ, h1 = Gh2

}

(4.16)

is a boundary relation for H∗
G satisfying (B1)–(B3);

(iii) the γ-field γG(λ) : H2 → H corresponding to ΓG is given by
γG(λ) = γ1(λ)G + γ2(λ), (4.17)

where γ(λ) = (γ1(λ) γ2(λ) ) : H1 ⊕H2 → H is decomposed according to H = H1 ⊕H2;
(iv) the Weyl function MG(λ) associated with ΓG is of the form

MG(λ) = G∗M11(λ)G + G∗M12(λ) + M21(λ)G + M22(λ). (4.18)

Proof. Define the operator ˜G ∈ [H], where H = H1⊕H2, and the operator W ∈ [H⊕H] by the
block formulas ˜G =

(

I G

0 I

)

and W =
(

G̃−1 0

0 G̃∗

)

, respectively. Then ˜G is invertible, ˜G−1 ∈ [H], and

W is a standard unitary operator on H2 = H⊕H. According to Proposition 3.18, the composition
˜Γ = WΓ : H2 → H2 given by (3.34) is a unitary relation (in the Krĕın space sense) satisfying
properties (B1)–(B3). Moreover, according to (3.35), the γ-field and the Weyl function associated
to ˜Γ are given by

γ̃(λ)h = γ(λ) ˜Gh = γ1(λ)(h1 + Gh2) + γ2(λ)h2, (4.19)

˜M(λ) =
(

M11(λ) M11(λ)G + M12(λ)
G∗M11(λ) + M21(λ) G∗M11(λ)G + G∗M12(λ) + M21(λ)G + M22(λ)

)

, (4.20)

respectively. Since ˜G−1h =
(

h1−Gh2

h2

)

and ˜G∗h′ =
(

h′
1

G∗h′
1+h′

2

)

, it follows from Corollary 4.2 that
HG in (4.15) is a closed symmetric relation on H with equal defect numbers and the relation
ΓG : H2 → H2

2 defined by (4.16) is a boundary relation for H∗
G satisfying conditions (B1)–(B3).

Moreover, the formulas for the γ-field and the Weyl function in (4.17) and (4.18) are obtained by
applying (4.11) in Corollary 4.2 to (4.19) and (4.20). This completes the proof.

Corollary 4.5. Let Sj be symmetric operators on Hilbert spaces Hj , let Γ(j) : H2
j → H2 be

boundary relations for S∗
j satisfying conditions (B1)–(B3), and let Mj(λ) be the corresponding

Weyl functions of Sj, j = 1, 2. Then
(i) the linear relation

H(3) =
{

̂f1 ⊕ ̂f2 :
{

̂f1,
( 0

h1

)}

∈ Γ(1),
{

̂f2,
( 0
−h1

)}

∈ Γ(2), h1 ∈ H
}

(4.21)

is closed and symmetric on H = H1 ⊕ H2 and has equal defect numbers;
(ii) the linear relation Γ(3) : H2 → H2 given by

Γ(3) :=
{{

̂f1 ⊕ ̂f2,
(

h
h1 + h2

)}

:
{

̂fi,
(

h
hi

)}

∈ Γ(i), h, hi ∈ H, i = 1, 2
}

(4.22)

is a boundary relation for H(3)∗ satisfying conditions (B1)–(B3);
(iii) the Weyl function M(λ) corresponding to Γ(3) is given by

M(λ) = M1(λ) + M2(λ), λ ∈ C \ R. (4.23)

Proof. Let Γ(1) ⊕Γ(2) =
{{

̂f1 ⊕ ̂f2,̂h1 ⊕̂h2

}

:
{

̂f1,̂h1

}

∈ Γ(1),
{

̂f2,̂h2

}

∈ Γ(2)
}

, be a boundary
relation for S∗

1 ⊕ S∗
2 ; its Weyl function is M(λ) = M1(λ) ⊕ M2(λ). Now all assertions follow by

applying Proposition 4.4 with Γ = Γ(1) ⊕ Γ(2) and G = IH.
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5. ORTHOGONAL COUPLINGS
5.1. Orthogonal Coupling and Boundary Relations

Suppose H1 and H2 are Hilbert spaces, ˜A is a selfadjoint relation on the orthogonal sum
˜H = H1 ⊕ H2, and Pj is the orthogonal projections onto Hj , j = 1, 2. Then the formulas

Sj = ˜A ∩ H2
j , Tj =

{

{Pjϕ,Pjϕ
′} : {ϕ,ϕ′} ∈ ˜A

}

, j = 1, 2, (5.1)

define closed symmetric linear relations S1 and S2 and not necessarily closed linear relations T1 and
T2 (on H1 and H2, respectively). The relation ˜A can be interpreted as a selfadjoint extension of the
orthogonal sum S1⊕S2. It is called the orthogonal coupling of S1 and T2 (or of T1 and S2), see [52].
The selfadjoint relation ˜A is said to be minimal with respect to the Hilbert space Hj (where j is
fixed, j = 1, 2) if

H1 ⊕ H2 = span
{

Hj + ( ˜A − λ)−1
Hj : λ ∈ ρ( ˜A)

}

. (5.2)

In the terminology used, e.g., in [40], ˜A is called the minimal selfadjoint extension of Sj or of any
of its restrictions A ⊂ Sj , j = 1, 2.

Assign to Tj the eigenspaces as in (2.1),

Nλ(Tj) = ker(Tj − λ), ̂Nλ(Tj) =
{

{f, λf} ∈ Tj : f ∈ Nλ(Tj)
}

. (5.3)

Note that S2 is related to ˜S = mulΓ in (3.3) by the rule S2 = −˜S (cf. (2.12)). Recall the following
basic facts, see [15].

Lemma 5.1 [15]. Let ˜A be a selfadjoint relation on ˜H = H1 ⊕H2, and let the linear relations Sj

and Tj , j = 1, 2, be defined by (5.1). Then
(i) clos Tj = S∗

j , j = 1, 2;
(ii) T1 is closed if and only if T2 is closed ;
(iii) Nλ(T1) = P1( ˜A − λ)−1 H2, Nλ(T2) = P2( ˜A − λ)−1 H1;
(iv) Nλ(Tj) is dense in Nλ(S∗

j ) for all λ ∈ C \ R, j = 1, 2;
(v) the defect numbers of S1 and −S2 coincide: n±(S1) = n∓(S2);
(vi) ˜A is minimal with respect to H1 (H2) if and only if S2 (S1, respectively) is simple.

Part (iv) of Lemma 5.1 and Definition 3.3 show that a boundary relation Γ for S∗ is minimal if
and only if S = ker Γ is simple (see [15]), which is equivalent (by part (vi) of Lemma 5.1) to the
condition that ˜A = J (Γ) is minimal with respect to H2.

5.2. Shtraus [Štraus, Strauss] Families

Consider the so-called Shtraus family of linear relations T (λ) on H = H1 defined for any λ ∈ ρ( ˜A)
by the rule

T (λ) :=
{

{P1f, P1f
′} : {f, f ′} ∈ ˜A, f ′ − λf ∈ H

}

, λ ∈ ρ( ˜A). (5.4)
The following result gives a boundary relation whose Weyl family coincides with T (−λ). Define the
linear relation Δ: H2

1 → H2
2 as the main transform of ˜A, see (2.12), i.e., write

Δ := J−1( ˜A) =
{{(

f1

f ′
1

)

,
(

f2

−f ′
2

)}

: ̂f1 ⊕ ̂f2 ∈ ˜A, fj, f
′
j ∈ Hj , j = 1, 2

}

. (5.5)

Theorem 5.2. Let A be a symmetric operator on H1 with equal defect numbers, let ˜A = ˜A∗ be
a selfadjoint exit space extension of A acting on ˜H = H1 ⊕H2 and minimal with respect to H1, and
let Sj, Tj , j = 1, 2, be defined by (5.1). Then

(i) the linear relation

Δ−1 =
{{(

f2

−f ′
2

)

, ̂f1

}

: ̂f1 ⊕ ̂f2 ∈ ˜A, fj , f
′
j ∈ Hj , j = 1, 2

}

(5.6)

is a minimal boundary relation for −S∗
2 ;

(ii) the Weyl family MΔ−1
(λ) corresponding to the boundary relation Δ−1 coincides with T (−λ).
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Proof. (i) By [15, Prop. 2.10], Δ: (H2
1, JH1) → (H2

2, JH2 ) in (5.5) is unitary, and hence Δ−1 is a
unitary linear relation from (H2

2, JH2) to (H2
1, JH1), see Proposition 2.4. Since ker Δ−1 = −S2, Δ−1

is a boundary relation for −S∗
2 with dom Δ−1 = −T2, and Δ−1 is minimal by Lemma 5.1.

(ii) Let {f2,−f ′
2} = {f2, λf2} ∈ ̂Nλ(−T2). Choose f1, f

′
1 ∈ H1 such that

{(

f1
f2

)

,
(

f ′
1

−λf2

)}

∈ ˜A, or, equivalently,
{(

f1
f2

)

,
(

f ′
1 + λf1

0

)}

∈ ˜A + λ.

The definition of Shtraus extension implies that {f1, f
′
1} ∈ T (−λ). Therefore, MΔ−1

(λ) ⊂ T (−λ).
The proof of the reverse inclusion is analogous.

5.3. Induced Boundary Relation and the Coupling of Symmetric Operators

Let A be a symmetric operator on the Hilbert space H1, let Π={H,Γ0,Γ1} be an ordinary
boundary triplet for A∗, let ˜A be a selfadjoint extension of A on H1 ⊕ H2, and let S2 and T2 be
defined as in (5.1). One can naturally assign a boundary relation on the exit space H2 to S∗

2 .

Theorem 5.3. Let A be a symmetric operator on H1 with equal defect numbers, and let ΠA =
{H,Γ0,Γ1} be an ordinary boundary triplet for A∗. Then,

(i) if ˜A = ˜A∗ is a minimal selfadjoint exit space extension of A on ˜H = H1 ⊕ H2 and S2 is
defined by (5.1), then the linear relation χ : H2

2 → H2 defined by

χ =
{{

̂f2,
(

Γ0
̂f1

−Γ1
̂f1

)}

: ̂f1 ⊕ ̂f2 ∈ ˜A, ̂f1 ∈ A∗, ̂f2 ∈ T2

}

(5.7)

is a minimal boundary relation for S∗
2 ;

(ii) if S2 is a simple symmetric operator on H2 and χ : H2
2 → H2 is a minimal boundary relation

for S∗
2 , then the linear relation ˜A defined by

˜A =
{

̂f1 ⊕ ̂f2 ∈ A∗ ⊕ S∗
2 :

{

̂f2,
(

Γ0
̂f1

−Γ1
̂f1

)}

∈ χ
}

(5.8)

is a minimal selfadjoint extension of A such that ˜A ∩ H2
2 = S2.

Proof. (i) Let ˜A be a selfadjoint extension of A on the Hilbert space H1 ⊕ H2. Introduce the
linear relation Δ−1 by (5.6). According to Theorem 5.2, Δ−1 is a boundary relation for −S∗

2 with
dom Δ−1 = −T2 and ran Δ−1 = T1. Since Π = {H,Γ0,Γ1} is an ordinary boundary triplet for A∗

and A ⊂ S1, it follows that ranΔ−1 = T1 ⊂ S∗
1 ⊂ A∗ = dom Γ and ran Γ = H2. By Theorem 2.10,

the composition χ− of the unitary relations Δ−1 and Γ,

χ− = Γ ◦ Δ−1 =
{{(

f2

−f ′
2

)

,Γ ̂f1

}

: ̂f1 ⊕ ̂f2 ∈ ˜A, ̂f1 ∈ A∗, ̂f2 ∈ T2

}

, (5.9)

is a unitary relation from (H2
2, JH2) to (H2, JH) with dom χ− = −T2. Changing the signs of the

second components in χ− yields the linear relation χ of the form (5.7) with dom χ = T2. Since
clos T2 = S∗

2 , χ : H2
2 → H2 is a boundary relation for S∗

2 .
To complete the proof of (i), it remains to prove that the boundary relation χ : H2

2 → H2 for
S∗

2 is minimal. Since the sets Nλ(T2) are dense in Nλ(S∗
2 ) (see Lemma 5.1 (iv)), the minimality of

χ is equivalent to the simplicity of S2. However, by Lemma 5.1 (vi), S2 is simple if and only if ˜A

is minimal with respect to H1, i.e., ˜A is a minimal selfadjoint extension of S1 or, equivalently, of
A ⊂ S1.

(ii) Let χ : H2
2 → H2 be a boundary relation for S∗

2 . Then

χ− =
{{(

f2

−f ′
2

)

,
(

h
−h′

)}

:
{(

f2

f ′
2

)

,
(

h
h′

)}

∈ χ
}

(5.10)

is a boundary relation for −S∗
2 . Since ran χ− ⊂ H2 = dom Γ−1 and ranΓ−1 = A∗ = A[⊥] =

(mul Γ−1)[⊥], it follows from Theorem 2.10 that the composition

Δ−1 := Γ−1 ◦ χ− =
{{(

f2

−f ′
2

)

, ̂f1

}

:
{(

f2

f ′
2

)

,
(

Γ0
̂f1

−Γ1
̂f1

)}

∈ χ, ̂f1 ∈ A∗
}

(5.11)

is a unitary relation from (H2
2, JH2) to (H2

1, JH1) with domΔ−1 = dom χ−.
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Then
Δ = χ−1

− ◦ Γ =
{{

̂f1,
(

f2

−f ′
2

)}

:
{

(

f2

f ′
2

)

,
(

Γ0
̂f1

−Γ1
̂f1

)}

∈ χ, ̂f1 ∈ A∗
}

(5.12)

is a unitary relation from (H2
1, JH1) to (H2

2, JH2 ) with ran Δ = domχ− and mulΔ = −S2. Applying
the main transform J to the unitary relation Δ, we obtain a selfadjoint extension ˜A of A given by
(5.8) for which ˜A ∩ H2

2 = ker χ = S2.

If χ : H2
2 → H2 is a minimal boundary relation for S∗

2 , then the minimality of ˜A with respect to
H1 is implied by the same reasons as in (i).

Remark 5.4. Theorem 5.3 establishes a one-to-one correspondence between all minimal (with
respect to H1) selfadjoint extensions ˜A of A and all minimal boundary relations χ : H2

2 → H2

with a fixed parameter space H. If ˜A is a canonical selfadjoint extension of A, i.e., if H2 = {0},
then χ becomes purely multivalued, i.e., mul χ = ran χ, and its Weyl family coincides with the
canonical selfadjoint extension −Γ( ˜A); cf. also [15, Cor. 6.2]. Since the minimal boundary relations
are uniquely determined (up to unitary equivalence) by their Weyl families [15], one can consider
the correspondence established in Theorem 5.3 as a one-to-one correspondence between all mini-
mal selfadjoint extensions of A and all Nevanlinna families τ(·) ∈ ˜R(H). This correspondence for
canonical selfadjoint extensions reduces to the parametrization stated in Proposition 3.15. For the
minimal selfadjoint exit space extensions, the correspondence can be written explicitly in terms of
generalized resolvents (see Section 6). Theorem 5.3 plays an important role in Section 7 as well.

Definition 5.5. The boundary relation χ defined by (5.7) is said to be the induced boundary
relation; it is uniquely determined by the exit space extension ˜A = ˜A∗ of A on H1 ⊕ H2 and an
ordinary boundary triplet ΠA for A∗.

Proposition 5.6. Let the assumptions of Theorem 5.3 be satisfied. Then the Weyl family τ(λ)
of S2 corresponding to the induced boundary relation χ : H2

2 → H2 is given by

τ(λ) =
{{

Γ0
̂f1,−Γ1

̂f1

}

: ̂f = {f, f ′} = ̂f1 ⊕ ̂f2 ∈ ˜A, f ′ − λf ∈ H1

}

. (5.13)

Proof. Let ̂f2 = {f2, f
′
2} ∈ ̂Nλ(T2). Then it follows from (5.1) that there are vectors f1, f

′
1 ∈ H1

for which ̂f = {f, f ′} = ̂f1 ⊕ ̂f2 ∈ ˜A and f ′ − λf ∈ H1. Hence, by (5.8),
{

̂f2,
(

Γ0
̂f1

−Γ1
̂f1

)}

∈ χ. (5.14)

Since ̂f2 ∈ ̂Nλ(T2), this shows that {Γ0
̂f1,−Γ1

̂f1} belongs to the Weyl family Mχ(λ) of S2 corre-
sponding to the boundary relation χ. This proves the inclusion Mχ(λ) ⊂ τ(λ), λ ∈ C+ ∪ C−.

Conversely, if ̂f1, ̂f satisfy conditions (5.13), then ̂f2 ∈ ̂Nλ(T2). Due to (5.14), we obtain
{Γ0

̂f1,−Γ1
̂f1} ∈ Mχ(λ), which proves the inclusion τ(λ) ⊂ Mχ(λ).

Definition 5.7. The selfadjoint extension ˜A of A constructed by (5.8) is called the coupling of
the symmetric operators A and S2 corresponding to the coupling of the boundary triplet Π and the
boundary relation χ.

Consider some examples of couplings of differential operators, both single-valued and multival-
ued. In what follows, W s

2 (Ω) stands for the Sobolev space on a domain Ω; see [9] or [53].

Example 5.8. Let A be the differential operator in L2(0, 1) generated by the differential ex-
pression −D2 on the domain dom A =

{

f ∈ W 2
2 (0, 1) : f(0+) = f ′(0+) = f(1) = 0

}

. It is clear
that A is a symmetric operator, n±(A) = 1, and

A∗ = −D2� dom A∗, dom A∗ =
{

f ∈ W 2
2 (0, 1) : f(1) = 0

}

. (5.15)
A boundary triplet ΠA = {C,Γ0,Γ1} for the operator A∗ is obtained by setting Γ0f = f(0),
Γ1f = f ′(0) for f ∈ dom A∗. Next, consider a symmetric operator S2 generated on L2(−1, 0) by
the same differential expression −D2 on the domain

dom S2 =
{

f ∈ W 2
2 (−1, 0) : f(0−) = f ′(0−) = f(−1) = 0

}

. (5.16)
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Again n±(S2) = 1 and S∗
2 = −D2� dom S∗

2 , dom S∗
2 =

{

f ∈ W 2
2 (−1, 0) : f(−1) = 0

}

. Choose a
boundary triplet ΠS2 = {C, χ0, χ1} for the operator S∗

2 by setting χ0f = f(0), χ1f = −f ′(0) for
f ∈ dom S∗

2 . The boundary conditions (5.8) determining a coupling ˜A of the symmetric operators
A and S2 corresponding to the coupling of the boundary triplets ΠA and ΠS2 now become

f(0+) = f(0−), f ′(0+) = f ′(0−),

and f ∈ W 2
2 (−1, 1). Thus, the coupling ˜A is a selfadjoint operator on L2(−1, 1) associated with the

Dirichlet boundary value problem for differential expression −D2,
˜A = −D2� dom ˜A, dom ˜A =

{

f ∈ W 2
2 (−1, 1) : f(1) = 0, f(−1) = 0

}

. (5.17)

Example 5.9. Let A be a minimal differential operator in L2(0, 1) associated with the differ-
ential expression −D2. The domain of A is characterized by

dom A =
◦

W 2
2(0, 1) =

{

f ∈ W 2
2 (0, 1) : f(0+) = f ′(0+) = f(1) = f ′(1) = 0

}

.

Then A is a symmetric operator in L2(0, 1) with the defect numbers n±(A) = 2, and its adjoint A∗

is generated by the same expression −D2 on the domain dom A = W 2
2 (0, 1). Moreover, a boundary

triplet ΠA = {C2,Γ0,Γ1} for the operator A∗ is obtained by setting

Γ0f =
(

f(0+)
f(1)

)

, Γ1f =
(

f ′(0+)
−f ′(1)

)

, f ∈ domA∗. (5.18)

Consider now a minimal differential operator S2 generated by the differential expression −D2 on
L2(−1, 0) and introduce a boundary triplet ΠS2 = {C, χ0, χ1} for S∗

2 by setting

χ0f =
(

f(0−)
f(−1)

)

, χ1f =
(−f ′(0−)

f ′(−1)

)

, f ∈ domS∗
2 . (5.19)

Then the boundary conditions (5.8) determining the coupling ˜A of the operators A and S2 corre-
sponding to the coupling of the boundary triplets ΠA and ΠS2 become

f(0+) = f(0−), f ′(0+) = f ′(0−), f(1) = f(−1), f ′(1) = f ′(−1).

In other words, the coupling ˜A is a selfadjoint operator on L2(−1, 1) associated with the periodic
boundary value problem for the differential expression −D2, namely,

˜A = −D2� dom ˜A, dom ˜A =
{

f ∈ W 2
2 [−1, 1] : f(1) = f(−1), f ′(1) = f ′(−1)

}

.

Example 5.10. Let A be as in the previous example, and let S2 be a minimal differential
operator generated on L2(−∞, 0) by the differential expression −D2, i.e., S2 = −D2� dom S2,

dom S2 =
◦
W 2

2(−∞, 0). Here n±(A) = 2, whereas n±(S2) = 1. Therefore, to obtain a coupling ˜A of
the operators A and S2, a (multivalued) boundary relation χ : S∗

2 → C
4 for S∗

2 is needed. Hence,
for any fixed h ∈ R, we write

χ =
{

{

̂f, col (f(0−), c,−f ′(0−), hc)
}

: ̂f ∈ S∗
2 , c ∈ C

}

. (5.20)

It follows that mulχ = {col (0, c, 0, hc) : c ∈ C} and dim mulχ = 1 = n±(A) − n±(S2). This
fact is in accordance with Proposition 3.2 (ii). For a fixed λ ∈ C \ R, the defect subspace Nλ(S∗

2 )
is spanned by fλ = exp(−i

√
λt), and

{

̂fλ, col (1, c, i
√

λ, hc)
}

∈ χ for every c ∈ C. Hence, the
corresponding Weyl function becomes

τ(λ) =
(

i
√

λ 0
0 h

)

. (5.21)

Clearly, τ(λ) is not strict, reflecting the fact that it corresponds to the multivalued boundary
relation χ (see Propositions 3.7 and 3.8). Relation (5.8) becomes

f(0+) = f(0−), f ′(0+) = f ′(0−), f(1) = c, f ′(1) = ch, c ∈ C,

and determines a selfadjoint operator ˜A (a coupling) generated in L2(−∞, 1) by the differential
expression −D2 and the boundary condition f ′(1) = hf(1), namely,

˜A = −D2� dom ˜A, dom ˜A = {f ∈ W 2
2 (−∞, 1) : f ′(1) = hf(1)}.
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Here the operator S1 is a restriction of −D2 to the domain

domS1 =
{

f ∈ W 2
2 (0, 1) : f(0+) = f ′(0+) = f ′(1) − hf(1) = 0

}

.

It differs from A, and dim S1/A = 1 = dimker Im τ(λ). This illustrates the general situation stated
in the next proposition.

Proposition 5.11. Let the assumptions of Theorem 5.3 hold, and let τ = {Φ,Ψ} be the Weyl
family of S2 in (5.13) corresponding to the induced boundary relation χ in (5.7). Then

dim S1/A = dim mulχ = dim τ(λ) ∩ τ(λ)∗ = dim ker NΦ,Ψ(λ, λ) (5.22)

for λ ∈ C \ R. Further,
(i) if S1 = A, or, equivalently, if τ ∈ Rs(H), then T1 is closed, i.e., T1 = T ∗∗

1 = S∗
1 (non-

closed, i.e., T1 
= S∗
1 ), if and only if τ ∈ Ru[H] (τ ∈ Rs(H) \ Ru[H], respectively), i.e.,

0 ∈ ρ(NΦ,Ψ(λ, λ)) (0 ∈ σc(NΦ,Ψ(λ, λ)), respectively) for each λ ∈ C+;
(ii) S1 = S∗

1 if and only if mulχ is selfadjoint, or, equivalently, the Weyl family τ(λ), λ ∈ C \ R,
is constant ; this also means that χ is purely multivalued, i.e., mulχ = ran χ.

Proof. By setting ̂f2 = 0 in (5.7), one obtains a description of mulχ,
(

h
h′

)

∈ mul χ ⇐⇒
(

h
−h′

)

= Γ ̂f, where ̂f ∈ ˜A ∩ H
2
1 = S1. (5.23)

Since Γ is an isomorphism between the linear spaces A∗/A and H2, this implies that mulχ and
S1/A are isomorphic. Therefore, dim S1/A = dim mulχ. Now relations (3.11) in Proposition 3.8
yield (5.22).

(i) This follows from [15, Lemma 4.4] and from the description of the subclasses Rs(H) and
Ru[H] in Subsection 2.4.

(ii) The equivalence between the condition S1 = S∗
1 and the selfadjointness of mulχ is clear from

(5.23) and the properties of Γ (cf. (3.21)). Since mulχ = τ(λ)∩τ(λ)∗ and ran χ = clos
(

τ(λ) ̂+ τ(λ)∗
)

by [15, Lemma 4.1], we see that mulχ is selfadjoint if and only if τ(λ) = mulχ for any λ ∈ C \ R

(see also [15, Cor. 6.2]). On the other hand, if τ(λ) = B for any λ ∈ C \ R, then B = B∗ and
mulχ = ran χ = B.

5.4. Weyl Function of a Coupling

It is shown here that, to every selfadjoint extension ˜A of A, one can assign a special boundary
relation (involving the linear relation A∗ ⊕ T2) whose parameter space has the double dimension.
The corresponding Weyl function of the operator A⊕S2 can be represented in block form, and it is
frequently encountered in boundary-eigenvalue problems with boundary conditions depending on
the eigenvalue parameter (see, e.g., [22, 23]).

Theorem 5.12. Let A be a symmetric operator on H1, let Π = {H1,Γ0,Γ1} be an ordinary
boundary triplet for A∗ with the Weyl function M(λ), let S2 be a symmetric operator on a Hilbert
space H2, let χ : H2

2 �→ H2 be a boundary relation for S∗
2 with the domain dom χ = T2 and the Weyl

family τ(·) = {Φ(·),Ψ(·)} ∈ ˜R(H), and let ˜H = H1 ⊕ H2. Then

(i) the linear relation Γcoupl : ˜H2 �→ H2 ⊕H2 given by

Γcoupl =
{{

̂f1 ⊕ ̂f2,
{(

h′ + Γ1
̂f1

h − Γ0
̂f1

)

,
(

−Γ0
̂f1

h′

)}}

: ̂f1 ∈ A∗,
{

̂f2,̂h
}

∈ χ
}

(5.24)

is a boundary relation for A∗ ⊕ S∗
2 satisfying (B1)–(B3) (see Proposition 3.16);

(ii) the corresponding Weyl function M(·) belongs to the class R[H2] and is given by

M =
( −Φ(Ψ + MΦ)−1 I − Φ(Ψ + MΦ)−1M

I − MΦ(Ψ + MΦ)−1 Ψ(Ψ + MΦ)−1M

)

=
( −(τ + M)−1 I − (τ + M)−1M

I − M(τ + M)−1 (τ−1 + M−1)−1

)

.

(5.25)
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Proof. (i) Clearly, the linear relation

˜Γ =
{{

̂f1 ⊕ ̂f2,
{(

Γ0
̂f1

−h′

)

,
(

Γ1
̂f1

h

)}}

: ̂f1 ∈ A∗,
{

̂f2,
(

h
h′

)}

∈ χ
}

(5.26)

forms a boundary relation for A∗ ⊕ S∗
2 , and the corresponding Weyl family is

τ̃(λ) = M(λ) ⊕ (−τ(λ)−1) = {I ⊕ (−Ψ(λ)),M(λ) ⊕ Φ(λ)} . (5.27)

Let W be the standard unitary operator defined by

W =
(

W00 IH2

−IH2 0

)

, where W00 =
( 0 −IH
−IH 0

)

. (5.28)

By Theorem 2.10, the composition Γcoupl = W ◦ ˜Γ is unitary, and hence, by Proposition 3.11, it
defines a new boundary relation for A∗ ⊕ S∗

2 whose Weyl family is

M(λ) = W [τ̃(λ)] =
{

Ω0(λ),
(−IH 0

0 Ψ(λ)

)}

, where Ω0 =
(

M(λ) Ψ(λ)
−IH Φ(λ)

)

. (5.29)

Since Ω0(λ) is invertible (see [14, Remark 5.7]), Γcoupl
0 �

(

̂Nλ(A) ⊕ ̂Nλ(T )
)

is a surjective mapping,

and thus, by Proposition 3.16, Γcoupl is a boundary relation for A∗ ⊕ S∗
2 satisfying conditions

(B1)–(B3). This proves (i).
(ii) Taking ω := (Ψ + MΦ)−1, one easily derives from (5.29) the following formula for the

corresponding Weyl function M(·):

M(λ) =
(

−I 0
0 Ψ(λ)

)

Ω0(λ)−1 =
(

−I 0
0 Ψ(λ)

)(

Φ(λ)ω(λ) Φ(λ)ω(λ)M(λ) − I
ω(λ) ω(λ)M(λ)

)

=
(

−Φ(λ)(Ψ(λ) + M(λ)Φ(λ))−1 I − Φ(λ)(Ψ(λ) + M(λ)Φ(λ))−1M(λ)
Ψ(λ)(Ψ(λ) + M(λ)Φ(λ))−1 Ψ(λ)(Ψ(λ) + M(λ)Φ(λ))−1M(λ)

)

,

which coincides with the one in (5.25). Moreover, M(·) ∈ R[H2].

Remark 5.13. (i) If the boundary relation χ in Theorem 5.3 is single-valued, then it can be de-
composed into a boundary triplet Π′′ = {H, χ0, χ1}, where the boundary operators χj are given by
χj = πjχ : T2 → H, j = 0, 1. In this case, the boundary relation ˜Γ of the form (5.26) becomes

a boundary triplet ˜Π = {H2, ˜Γ0, ˜Γ1}, where ˜Γ =
(

Γ̃0

Γ̃1

)

with ˜Γ0 =
(

Γ0

−χ1

)

and ˜Γ1 =
(

Γ1

χ0

)

, and
relation (5.8) becomes

˜A = ker(˜Γ1 − B˜Γ0) with B =
(

0 IH
IH 0

)

. (5.30)

In other words, the coupling ˜A is

˜A =
{

̂f1 ⊕ ̂f2 ∈ A∗ ⊕ T2 : Γ0
̂f1 − χ0

̂f2 = Γ1
̂f1 + χ1

̂f2 = 0
}

. (5.31)

In this form, the construction of the coupling ˜A of two boundary triplets has been introduced in [14]
under the additional assumption that Π′′ = {H, χ0, χ1} is an ordinary boundary triplet.

(ii) Suppose that the Nevanlinna family τ(·) in Theorem 5.12 belongs to Rs(H). Then the Weyl
function corresponding to the triplet Γcoupl = {H2,Γcoupl

0 ,Γcoupl
1 } with

Γcoupl
0 = ˜Γ1 − B˜Γ0 =

(

χ1 + Γ1
χ0 − Γ0

)

, Γcoupl
1 = −˜Γ0 =

(−Γ0
χ1

)

, (5.32)

is (B − τ̃(·))−1. Using (5.26) and (5.27), we can readily see that

(B − τ̃)−1 =
(( 0 1

1 0

)

−
(

M 0
0 −τ−1

))−1

=
(−(τ + M)−1 (τ + M)−1τ

τ(τ + M)−1 (τ−1 + M−1)−1

)

. (5.33)
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The matrix of the linear-fractional transformation τ̃(·) → (B − τ̃(·))−1 coincides with the block
matrix W given by (5.28), i.e., (B − τ̃(·))−1 = W [τ̃(·)]. Comparing (5.25) with (5.33), we see that,
in this case, the function (B − τ̃(·))−1 coincides with the Weyl function M(·) corresponding to the
boundary triplet Γcoupl. Moreover, these arguments (borrowed from [14]) explain the appearance
of the linear-fractional transformation W in formula (5.29). Under the additional assumption that
χ = {H, χ0, χ1} is an ordinary boundary triplet, Theorem 5.12 was proved in [14].

(iii) In the case of finite defect numbers, the function M(·) arises, for instance, in connection
with Sturm–Liouville operators and Hamiltonian systems with “λ-depending” boundary conditions
expressed by means of a Nevanlinna pair {Φ(·),Ψ(·)} (= τ(·)). In this case, the function M(·) is
known as the spectral matrix induced by the Nevanlinna pair {Φ(·),Ψ(·)}; cf. [32, 22, 23, 31].

Finally, the usefulness of the general results from Section 4 concerning intermediate extensions
is demonstrated by applying them to the Weyl function M(·) in Theorem 5.12. Namely, it is
shown that the diagonal elements of the block operator function M(λ) are also Weyl families of
some intermediate extensions of the operator A ⊕ S2. In particular, this result gives a geometric
interpretation of the Nevanlinna function (τ(·)+M(·))−1 arising in the Krĕın–Năımark formula for
generalized resolvents (see (6.5)) as a Weyl function of some intermediate extension. The importance
of this result will become clear in Section 7.

Theorem 5.14. Let A be a symmetric operator in H1, and let Π = {H1,Γ0,Γ1} be an ordinary
boundary triplet for A∗ with the Weyl function M(λ). Let S2 be a symmetric operator in a Hilbert
space H2, let χ : H2

2 �→ H2 be a boundary relation for S∗
2 with the domain dom χ = T2 and the Weyl

family τ(·) = {Φ(·),Ψ(·)} ∈ ˜R(H), and let ˜H = H1 ⊕ H2. Then
(i) the linear relation

H(1) =
{

̂f1 ⊕ ̂f2 ∈ A∗ ⊕ T2 : Γ0
̂f1 = 0,

{

̂f2,
( 0
−Γ1

̂f1

)}

∈ χ
}

(5.34)

is closed and symmetric on H = H1 ⊕ H2 and has equal defect numbers;
(ii) the linear relation Γ(1) : H2 �→ H2 given by

Γ(1) =
{{

̂f1 ⊕ ̂f2,
(

Γ1
̂f1 + h′

−Γ0
̂f1

)}

:
{

̂f2,
(

Γ0
̂f1

h′

)}

∈ χ, ̂f1 ∈ A∗
}

(5.35)

is a boundary relation for H(1)∗ satisfying (B1)–(B3);
(iii) the Weyl function of H(1) corresponding to Γ(1) is given by

M (1)(λ) = −(τ(λ) + M(λ))−1 = −Φ(λ)(Ψ(λ) + M(λ)Φ(λ))−1; (5.36)
(iv) the linear relation

H(2) =
{

̂f1 ⊕ ̂f2 ∈ A∗ ⊕ T2 : Γ1
̂f1 = 0,

{

̂f2,
(

Γ0
̂f1

0

)}

∈ χ
}

(5.37)

is closed and symmetric on ˜H = H1 ⊕ H2 and has equal defect numbers;
(v) the linear relation Γ(2) : ˜H2 �→ H2 given by

Γ(2) =
{{

̂f1 ⊕ ̂f2,
(−Γ0

̂f1 + h

−Γ1
̂f1

)}

:
{

̂f2,
(

h
−Γ1

̂f1

)}

∈ χ, ̂f1 ∈ A∗
}

(5.38)

is a boundary relation for H(2)∗ satisfying (B1)–(B3);
(vi) the Weyl function of H(2) corresponding to Γ(2) is given by

M (2)(λ) = (τ(λ)−1 + M(λ)−1)−1 = Ψ(λ)(Ψ(λ) + M(λ)Φ(λ))−1M(λ). (5.39)

Proof. To prove assertions (i)–(iii), we apply Proposition 4.1 to the boundary relation Γcoupl in
Theorem 5.12. Then the boundary conditions in (4.3) become Γ1

̂f1 + h′ = −Γ0
̂f1 + h = Γ0

̂f1 = 0,
or, equivalently, Γ1

̂f1 = −h′, Γ0
̂f1 = h = 0, which yields (5.34). Moreover, by part (i) of Proposi-

tion 4.1, H(1) is a closed symmetric linear relation on ˜H with equal defect numbers. By applying (4.4)
to the boundary relation Γcoupl in (5.24), we can see that h − Γ0

̂f1 = 0, which then yields (5.35).
Finally, part (iv) of Proposition 4.1 shows that the Weyl function corresponding to the boundary
relation Γ(1) is the upper left corner of the block representation of M(λ) in (5.25).

Assertions (iv)–(vi) follow from Theorem 5.12 and Corollary 4.2.
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The next result is used below to study the Năımark classification of exit space extensions in
Section 7.

Proposition 5.15. Let the boundary relation χ : H2
2 → H2 in Theorem 5.14 be single-valued,

let A be a closed nondensely defined symmetric operator on H1 such that the linear relation

A∞ := A ̂+ ({0} × mulA∗) (5.40)

is selfadjoint on H1, and let an (ordinary) boundary triplet Π = {H,Γ0,Γ1} for A∗ satisfy
ker Γ1 = A∞. Then T (1) = domΓ(1) and H(1) = ker Γ(1) satisfy the following conditions:

(i) mulT (1) = {0} if and only if mulT2 = {0};
(ii) mulH(1) = {0} if and only if mulS2 = {0}.

Proof. (i) Since χ is single-valued, (5.35) shows that T (1) = dom Γ(1) is given by

T (1) :=
{

̂f1 ⊕ ̂f2 ∈ A∗ ⊕ T2 : Γ0
̂f1 = χ0

̂f2

}

(5.41)

and its multivalued part is

mulT (1) =
{

f ′
1 ⊕ f ′

2 : ̂f1 = {0, f ′
1} ∈ A∗, ̂f2 = {0, f ′

2} ∈ T2, Γ0
̂f1 = χ0

̂f2

}

. (5.42)

Assume that ̂f2 = {0, f ′
2} ∈ T2. Since the selfadjoint extension A∞ = ker Γ1 of A is given by (5.40)

and Γ is an ordinary boundary triplet for A∗, the selfadjoint extension A0 := ker Γ0 is transversal
to A∞ and

H = Γ0(A∗) = Γ0(A0 ̂+({0} ⊕ mulA∗)) = Γ0({0} ⊕ mulA∗). (5.43)

Thus, there exists an ̂f1 = {0, f ′
1} ∈ A∗ such that Γ0

̂f1 = χ0
̂f2, and hence f ′

1 ⊕ f ′
2 ∈ mulT (1) by

(5.42). Therefore, if mulT2 is nonzero, the same holds for mulT (1).
Assume now that mulT2 = {0}. Let f ′

1 ⊕ f ′
2 ∈ mulT (1). Then (5.42) shows that f ′

2 = 0 and
Γ0

̂f1 = χ0
̂f2 = 0 with ̂f1 = {0, f ′

1} ∈ A∗. Thus, {0, f ′
1} ∈ A0 ∩ A∞ = A, see (5.40), and, since A is

an operator, we obtain f ′
1 = 0. This shows that mulT (1) = {0} and completes the proof of the first

assertion.
(ii) Since χ is single-valued, the symmetric relation H(1) in (5.31) becomes

H(1) =
{

̂f1 ⊕ ̂f2 ∈ A∗ ⊕ T2 : Γ0
̂f1 = χ0

̂f2 = Γ1
̂f1 + χ1

̂f2 = 0
}

. (5.44)

To prove the equivalence, let us show that

mulH(1) = { 0 ⊕ f ′
2 : f ′

2 ∈ mulS2 } . (5.45)

If f ′
1 ⊕ f ′

2 ∈ mulH(1), then (5.44) yields Γ0
̂f1 = 0, where ̂f1 = {0, f ′

1} ∈ A∗. Hence,

̂f1 = {0, f ′
1} ∈ A0 ∩ A∞ = A,

and therefore, f ′
1 = 0 and Γ1

̂f1 = 0. Now (5.44) implies that χ ̂f2 = 0, i.e., ̂f2 = {0, f ′
2} ∈ ker χ = S2.

The reverse inclusion is clear, and this proves (5.45).

6. GENERALIZED RESOLVENTS AND ADMISSIBILITY
6.1. Krĕın’s Formula for Generalized Resolvents

Let A be a symmetric operator on a Hilbert space H with equal defect numbers. Let ˜A be a
selfadjoint extension of A acting on a Hilbert space ˜H which contains H as a closed subspace.
The compression Rλ = PH( ˜A − λ)−1�H of the resolvent of ˜A to H is said to be a generalized
resolvent of A.

We claim that, using the coupling method, one can readily obtain a general version of the
Krĕın–Năımark formula which parametrizes all generalized resolvents of A by the maximal dis-
sipative relations (Nevanlinna pairs) τ(·). Indeed, at the first step, by combining Theorem 5.3,
Proposition 5.6, and Theorem 3.6, one arrives at the following formula for generalized resolvents
(in the Shtraus form).
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Theorem 6.1. Let A be a closed symmetric operator on a Hilbert space H with equal defect
numbers n+(A) = n−(A). Let Π = {H,Γ0,Γ1} be an ordinary boundary triplet for A∗. Let ˜A be
a selfadjoint extension of A on a Hilbert space ˜H ⊃ H. In this case, there is a unique Nevanlinna
family τ(λ) ∈ ˜RH such that

PH( ˜A − λ)−1�H = ( ˜A−τ(λ) − λ)−1. (6.1)

Moreover, for every h ∈ H, the vector f1 = PH( ˜A− λ)−1h is a solution of the following “boundary-
value problem” with the spectral parameter τ(λ) in the boundary conditions,

f ′
1 − λf1 = h, ̂f1 = {f1, f

′
1} ∈ A∗, {Γ0

̂f1,−Γ1
̂f1} ∈ τ(λ). (6.2)

Conversely, for any given τ(λ) ∈ ˜RH, there is a minimal selfadjoint extension ˜A of A on a
Hilbert space ˜H ⊃ H such that (6.1) holds.

Proof. Let λ ∈ ρ( ˜A) and h ∈ H. Then there exists an ̂f = {f, f ′} ∈ ˜A such that

f ′ − λf = h. (6.3)

Projecting (6.3) to H1 = H and H2 = ˜H � H, respectively, leads to

f ′
1 − λf1 = h, f ′

2 − λf2 = 0, where fj =PHj
f and f ′

j =PHj
f ′, j = 1, 2. (6.4)

It follows from (5.7) in Theorem 5.3 that
{

̂f2,
(

Γ0f̂1

−Γ1f̂1

)}

∈ χ, where ̂fj = {fj , f
′
j}. Since ̂f2 ∈ ̂Nλ(T2)

here, see (6.4), it follows that {Γ0
̂f1,−Γ1

̂f1} ∈ τ(λ), where τ(·) is the Weyl family of S2 correspond-
ing to the boundary relation χ. This proves (6.2). In view of (3.21), the second condition in (6.2)
means that ̂f1 ∈ ˜A−τ(λ), and therefore, relation (6.1) holds as well. The uniqueness of ˜A−τ(λ) and
τ(λ) is clear from (6.1) and (6.2).

Conversely, starting from τ(·) ∈ ˜R(H) and applying Theorem 3.6, one obtains a simple symmetric
operator S2 in H2 and a minimal boundary relation χ : H2

2 → H2 for S∗
2 such that the corresponding

Weyl family is τ(·). Then, by Theorem 5.3, the linear relation ˜A on ˜H = H1 ⊕ H2 (a coupling of
T1 and S2) defined by (5.8) is a minimal selfadjoint extension of A satisfying (5.1) and hence, by
the first part of the proof, (6.1) holds for some τ1(·) ∈ ˜R(H). The relation τ1(·) = τ(·) is clear from
Proposition 5.6.

Combining Theorem 6.1 with formula (3.25) for canonical resolvents, we arrive at the following
assertion.

Theorem 6.2 [38]. Let A be a symmetric operator on H with n+(A) = n−(A), let Π =
{H1,Γ0,Γ1} be a boundary triplet for A∗, and let M(·) and γ(·) be the corresponding Weyl function
and the γ-field, respectively. Then the formula

Rλ = (A0 − λ)−1 − γ(λ)(M(λ) + τ(λ))−1γ(λ̄)∗, λ ∈ ρ(A0) ∩ ρ( ˜A), (6.5)
with A0 = ker Γ0 establishes a bijective correspondence between the generalized resolvents Rλ of A

and the Nevanlinna families τ(·) ∈ ˜RH.

Proof. Let λ ∈ ρ(A0). According to Proposition 3.15, λ ∈ ρ(A−τ(λ)) if and only if 0 ∈ ρ(M(λ)+
τ(λ)). In this case (see (3.25)),

( ˜A−τ(λ) − λ)−1 = (A0 − λ)−1 − γ(λ)(M(λ) + τ(λ))−1γ(λ̄)∗. (6.6)

Now the assertion follows from Theorem 6.1.

Remark 6.3. (i) For “good” families τ(·), Theorem 6.2 can readily be derived from Theo-
rem 5.12 and from formula (3.25) for canonical resolvents with the Weyl function M(·) of the cou-
pling (see (5.25)). In particular, if τ(·) ∈ Ru[H], the coupling becomes “symmetric” with respect to
the decomposition ˜H = H1 ⊕ H2, H1 = H. Indeed, by Theorem 5.14 and Proposition 3.14, there is
an ordinary boundary triplet {H, χ0, χ1} for S∗

2 whose Weyl function is τ(·). The boundary triplet
{H2,Γcoupl

0 ,Γcoupl
1 } for A∗ ⊕ S∗

2 defined by (5.24) has the Weyl function M(·) of the form (5.25).
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In view of (5.32), ˜A and A0⊕A
(2)
1 with A

(2)
1 = ker χ1 are canonical selfadjoint extensions of A⊕S2,

and formula (3.25) gives

( ˜A − λ)−1
(

h1
h2

)

=
(

(A0 − λ)−1h1

(A(2)
1 − λ)−1h2

)

−
(

γ(λ) 0
0 γ(2)(λ)

)

M(λ)
(

γ(λ̄)∗h1

γ(2)(λ̄)∗h2

)

, (6.7)

where γ(2)(λ) is the γ-field corresponding to the boundary triplet {H,−χ1, χ0}. Setting h2 = 0 and
projecting the formula (6.7) onto H1 yields (6.5).

(ii) Note that, in fact, the formulas (6.1) and (6.5) are equivalent to each other and can easily
be deduced from each other (cf. [41, 21]).

(iii) By Proposition 5.11, the constant Nevanlinna families τ(·) ≡ τ ∈ ˜R(H) correspond to the
induced boundary relations χ : H2 → H2 which are purely multivalued, i.e., mulχ = ran χ. The
minimal property of χ yields H2 = {0}; see [15, Cor. 6.2]. Hence, the coupling technique used to
prove Theorems 6.1 and 6.2 covers the case of constant Nevanlinna families τ ∈ ˜R(H) and their
one-to-one correspondence to the canonical selfadjoint extensions of A acting on H.

Remark 6.4. The description of all generalized resolvents was originally given in different forms
by M.G. Krĕın [36] and M.A. Năımark [43]. It has been extended to the case of infinite indices by
Saakyan (see [38, 19] and the references therein). Another description (in a form close to (6.1))
was given by A. V. Štraus [51, 52]. A relationship between the Krĕın–Năımark formula and the
boundary triplets was discovered in [19, 21, 41]. Moreover, other proofs and generalizations of the
Krĕın–Năımark formula for nondensely defined symmetric operators can be found in [21, 41, 24, 40];
also see the references there.

6.2. Admissibility
In this section, some new admissibility criteria are given ensuring that a given generalized re-

solvent of a symmetric operator corresponds to a selfadjoint operator extension. The relationships
between these criteria and some other conditions (found earlier in [21, 41, 40]) are also discussed.

Let A be a symmetric operator on H with equal defect numbers n+(A) = n−(A) � ∞, and let
Π = {H,Γ0,Γ1} be a boundary triplet for A∗. According to Theorem 6.2, the generalized resolvents
Rλ of A are in a one-to-one correspondence, given by the Krĕın–Năımark formula (6.5), with the
Nevanlinna families τ ∈ ˜R(H). Let ˜A be a minimal selfadjoint extension of A whose compressed
resolvent is Rλ. Then the family τ(λ) associated to ˜A by (6.5) is said to be Π-admissible if ˜A is an
operator extension of A, i.e., if mul ˜A = {0}. Recall the following definition (see [15]).

Definition 6.5. Let Γ: H2 → H2 be a boundary relation and T = dom Γ. The forbidden lineal
of Γ is FΓ = Γ({0} × mulT ).

The first result here is a geometric characterization of Π-admissibility of τ(λ) ∈ ˜R(H) using the
induced boundary relation χ introduced in Theorem 5.3.

Proposition 6.6. Let A be a (nondensely defined) closed symmetric operator on H with equal
defect numbers, let Π = {H,Γ0,Γ1} be an ordinary boundary triplet for A∗ with the Weyl function
M(λ), and let χ : H2

2 → H2 be the induced boundary relation for S∗
2 with the Weyl family τ(λ) as

in Theorem 5.3. Then τ(λ) ∈ ˜R(H) is Π-admissible (i.e. mul ˜A = {0}) if and only if
FΓ ∩ −Fχ = {0}, (6.8)

where FΓ and Fχ are the forbidden lineals of Γ = {Γ0,Γ1} and χ, respectively.

Proof. Let ̂f1 = {0, f ′
1} and ̂f2 = {0, f ′

2}. Assume that ̂f1 ⊕ ̂f2 ∈ ˜A. Then Γ ̂f1 ∈ FΓ, and (5.7)
shows that {Γ0

̂f1,Γ1
̂f1} ∈ −Fχ. Thus, (6.8) implies that Γ ̂f1 = 0 and ̂f2 ∈ ker χ, i.e., ̂f1 ∈ A and

̂f2 ∈ S2. Therefore, f ′
1 = f ′

2 = 0 (since A and S2 are operators); recall that, by Lemma 5.1, ˜A is a
minimal selfadjoint extension of A if and only if S2 is simple, and thus, in particular, an operator.
The reverse implication is proved in the same way.

If A is densely defined, then mulA∗ = {0} and FΓ = {0}, and thus condition (6.8) holds for
any τ(λ) ∈ ˜R(H). Hence, the well-known fact that every minimal selfadjoint extension of a densely
defined symmetric operator A is an operator is an immediate consequence of Proposition 6.6.
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Using the analytic description of the forbidden lineal FΓ established in [21] for an ordinary
boundary triplet Π = {H,Γ0,Γ1} of A∗, one can express the criterion in Proposition 6.6 in terms
of the Weyl function M(λ).

Corollary 6.7. Let the assumptions be as in Proposition 6.6. Then τ(λ) ∈ ˜R(H) is Π-admissible
if and only if

−Fχ ∩
(

M(i∞) ̂+ ({0} × ran B
1/2
M )

)

= {0}, (6.9)

where BM = s- limy↑∞ M(iy)/y (∈ [H]) and M(i∞)h = limy↑∞ M(iy)h with h ∈ dom M(i∞) =
domFΓ = {h ∈ H : limy↑∞ y(Im M(iy)h, h) < ∞}.

Proof. This follows from Proposition 6.6 and from the description of FΓ in [21, Th. 1.1, Cor. 2.6].

The next theorem gives a general Π-admissibility criterion for the family τ(λ) = {φ(λ), ψ(λ)} in
purely analytic terms.

Theorem 6.8. Let A be a (nondensely defined) closed symmetric operator on H with equal
defect numbers n+(A) = n−(A) � ∞, let Π = {H,Γ0,Γ1} be an ordinary boundary triplet for A∗

with the Weyl function M(λ), and let τ(λ) = {φ(λ), ψ(λ)} be a Nevanlinna pair in H. Then
(i) the pair {φ(λ), ψ(λ)} is Π-admissible if and only if the following two conditions are satisfied :

s- lim
y↑∞

φ(iy)(ψ(iy) + M(iy)φ(iy))−1/y = s- lim
y↑∞

(τ(iy) + M(iy))−1/y = 0, (6.10)

s- lim
y↑∞

ψ(iy)(ψ(iy) + M(iy)φ(iy))−1M(iy)/y = s- lim
y↑∞

(τ(iy)−1 + M(iy)−1)−1/y = 0; (6.11)

(ii) if, in addition, A0 = ker Γ0 is an operator, then the Π-admissibility of {φ(λ), ψ(λ)} is
equivalent to condition (6.10);

(iii) if A1 = ker Γ1 is an operator, then the Π-admissibility of {φ(λ), ψ(λ)} is equivalent to
condition (6.11).

Proof. (i) By Theorem 3.6, there are a Hilbert space H2, a symmetric operator S2 on H2,
and a minimal boundary relation χ : H2

2 → H2 for S∗
2 whose Weyl family is τ(λ) = {φ(λ), ψ(λ)}.

Let the selfadjoint extension ˜A of A ⊕ S2 be as in Theorem 5.3. Then, by Theorem 5.12, the
function M(λ) given by (5.25) is the Weyl function of A ⊕ S2 corresponding to the boundary
relation ΓM : ˜H2 → H2

M (of the form (5.24)) satisfying conditions (B1)–(B3). Therefore, according
to Proposition 3.17, mul ˜A = {0} if and only if

w- lim
y↑∞

M(iy)/y = 0. (6.12)

It remains to note that (6.12) is equivalent to the pair of conditions (6.10), (6.11).

(ii) Assume that A0 is an operator. Let Γ(1) : ˜H2 �→ H2 be the boundary relation (5.35) as
defined in Theorem 5.14 for H(1)∗, where H(1) = ker Γ(1) is the closed symmetric relation in
˜H = H1 ⊕ H2 given by (5.34). According to Theorem 5.14, the boundary relation Γ(1) satisfies
conditions (B1)–(B3), and the corresponding Weyl function of H(1) is −(M(λ) + τ(λ))−1. To show
that H(1) is an operator, assume that ̂f1 ⊕ ̂f2 = {0, f ′

1} ⊕ {0, f ′
2} ∈ H(1). Then ̂f1 = 0, since

Γ0
̂f1 = 0 and mulA0 = {0}. Using the last condition in the definition of H(1) in (5.34), we obtain

{ ̂f2, 0} ∈ χ, and hence ̂f2 ∈ ker χ = S2. Since S2 is an operator, it follows that ̂f2 = 0, and hence
H(1) is an operator as well. By Proposition 3.17, ˜A = ker Γ(1)

0 is an operator if and only if (6.10)
holds.

(iii) If A1 = ker Γ1 is an operator, then it is clear from (5.37) that H(2) is also an operator.
Hence, again by Proposition 3.17 and by part (vi) of Theorem 5.14, ˜A = ker Γ(2)

0 is an operator if
and only if (6.11) holds.

Remark 6.9. It is of interest to note the following analytical facts resulting from Theorem 6.8.
(i) If M ∈ Ru[H], then the condition s- limy→∞ M(iy)/y = 0 together with condition (6.10)

imply condition (6.11), since the limit condition analytically characterizes the fact that A0 is an
operator; see Proposition 3.17.
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(ii) If M ∈ Ru[H], then the condition s- limy→∞(yM(iy))−1 = 0 together with condition (6.11)
imply condition (6.10), since the limit condition analytically characterizes the fact that A1 is an
operator.

(iii) If M ∈ Ru[H], then the limit conditions (3.28) and (3.29) imply conditions (6.10) and
(6.11), since the first two limit conditions analytically characterize the fact that A∗ is an operator
(see Proposition 3.17). However, even together, the limit conditions s- limy→∞ M(iy)/y = 0 and
s- limy→∞(yM(iy))−1 = 0 neither imply condition (6.10) nor condition (6.11), since both A0 and
A1 can be operators such that A is not densely defined.

We know no direct analytic proof of these facts, even in the case of (n × n)-matrix functions
with n > 1.

Select the selfadjoint extension A0 = ker Γ for the boundary triplet {H,Γ0,Γ1} for A∗ such that
mulA0 = mulA∗. Then we obtain a criterion for the Π-admissibility of τ which involves only the
symmetric condition S0 = ker χ0 for T = domχ ⊂ S∗

2 from the exit space and only the limit value
BM from M(λ).

Proposition 6.10. Let the assumptions be as in Theorem 6.8, let the boundary triplet Π =
{H,Γ0,Γ1} for A∗ be fixed in such a way that A0 = ker Γ0 satisfies mulA0 = mulA∗, and let
S0 = ker χ0. Then

(i) τ(λ) ∈ ˜RH is Π-admissible if and only if

F0,χ ∩ ({0} × ran B
1/2
M ) = {0}, (6.13)

where F0,χ = χ({0} × mulS0) and BM = s- limy↑∞ M(iy)/y (∈ [H]);
(ii) if τ(λ) is Π-admissible, then

mul τ(λ) ∩ ranB
1/2
M = {0}, λ ∈ C \ R; (6.14)

in addition, if S0 is an operator, then condition (6.14) is also sufficient for the Π-admissi-
bility of τ(λ); this holds, for instance, if τ(λ) is a selfadjoint constant ;

(iii) a family τ(λ) ∈ Ru[H] is Π-admissible if and only if ranB
1/2
τ ∩ ran B

1/2
M = {0}, where

Bτ = s- limy↑∞ τ(iy)/y (∈ [H]).

Proof. (i) Since mulA0 = mulA∗, we have Γ({0} × mulA∗) = {0} × Γ1(mul A∗), and hence
FΓ = {0}×mulFΓ = {0}× ran B

1/2
M , see Corollary 6.7. Assume now that ̂h = {h, h′} ∈ −Fχ ∩FΓ.

Then h = 0 and { ̂f2, {0,−h′}} ∈ χ for some ̂f2 = {0, f ′
2} ∈ dom χ, so that ̂f2 ∈ ker χ0 = S0. Hence,

̂h ∈ −F0,χ, and this shows that −Fχ ∩ FΓ ⊂ −F0,χ ∩ FΓ. Since F0,χ ⊂ Fχ, the converse inclusion
is clear. Thus, (6.13) is equivalent to (6.8), and therefore (i) follows from Proposition 6.6.

(ii) According to [15, Lemma 4.1],

{0} × mul τ(λ) = mulχ ∩ ({0} × H) ⊂ F0,χ (6.15)

for any λ ∈ C \ R, and thus the necessity of condition (6.14) follows from (6.13). If S0 is an operator,
then F0,χ = mul χ, and (6.15) shows that relation (6.14) is equivalent to (6.13). If τ(λ) is constant,
then the minimality of the boundary relation yields H2 = {0}, and thus S2 = S0 = S∗

2 = {0, 0} is
an operator; cf. [15, Cor. 6.2].

(iii) If τ(λ) ∈ Ru[H], and hence χ is an ordinary boundary triplet for S∗
2 , then we have

F0,χ = {0} × ranB
1/2
τ (see [21, Prop. 2.6]), and thus (iii) follows from (i).

Corollary 6.11. Let A0 be a selfadjoint extension of A such that A0 = A ̂+ ({0} × mulA∗).
Then τ(λ) is Π-admissible if and only if

mul τ(λ) = 0 and S0 (= ker χ0) is an operator, (6.16)

where χ is the induced boundary relation with the Weyl family τ(λ). If τ(λ) ∈ R[H], then (6.16) is
equivalent to

s- lim
y↑∞

τ(iy)/y = 0. (6.17)
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Proof. Since A0 = Â+({0} × mulA∗), we have FΓ = Γ({0} × mulA∗) = Γ(A0) = {0} × H. If
(6.16) holds, then F0,χ ∩FΓ = mulχ∩ ({0} ×H) = {0}; see (6.15). Hence, τ(λ) is Π-admissible by
Proposition 6.10 (i). Conversely, if τ(λ) is Π-admissible, then mul τ(λ) = {0} by Proposition 6.10
(ii), since ran B

1/2
M = mulFΓ = H; cf. [21]. To prove that S0 is an operator, assume that ̂f2 =

{0, f ′
2} ∈ S0. Then { ̂f2, {0, h′}} ∈ χ for some h′ ∈ H; therefore, {0, h′} ∈ F0,χ, and thus {0, h′} ∈

F0,χ ∩ FΓ. Hence, (6.13) gives h′ = 0, and S0 is an operator. This completes the proof of the first
assertion.

Assume now that τ ∈ R[H]. Then mul τ(λ) = 0 by assumption, and Proposition 3.17 shows that
mulS0 = {0} if and only if (6.17) holds.

Remark 6.12. Other approaches to the admissibility problem were suggested in [40, 41, 21]; see
also [14]. Namely, a direct proof of part (ii) in Theorem 6.8 applying the Krĕın–Năımark formula
was used in [41]. The proof there is more complicated than the one presented here. Further, under
the additional assumption that A1 = ker Γ1 is an operator, another admissibility criterion (with
a rather complicated proof) was obtained in [21]. This criterion is equivalent to assertion (iii) in
Theorem 6.8, whereas we still have no direct proof of this equivalence.

Another criterion for the admissibility (without additional assumptions) was proved in [40].
A relationship between Theorem 6.8 and the Langer–Textorious result is discussed in Section 6.3.

Yet another admissibility criterion is obtained in the next proposition, where ˜A is regarded as
an extension of the symmetric intermediate extension HT defined in Proposition 4.4.

Proposition 6.13. Let A be a symmetric operator satisfying the assumptions of Theorem 6.8,
let τ(λ) = {φ(λ), ψ(λ)} be a Nevanlinna pair in H, and let the matrix M(λ) = (Mij(λ))2i,j=1 be
defined by (5.25). Assume that G ∈ [H] and define MG(λ) by

MG(λ) = G∗M11(λ)G + G∗M12(λ) + M21(λ)G + M22(λ). (6.18)
In this case, for the pair {φ(λ), ψ(λ)} to be Π-admissible, it is necessary and, provided that
˜A−G∗ = ker(Γ1 + G∗Γ0) is an operator, it is also sufficient that the following condition be valid :

s- lim
y↑∞

MG(iy)
y

= 0. (6.19)

Proof. Let χ be the induced boundary relation in (5.7). It follows from Proposition 4.4 and
Theorem 5.12 that MG(λ) is the Weyl function of the symmetric relation

HG =
{

̂f1 ⊕ ̂f2 ∈ A∗ ⊕ S∗
2 : { ̂f2,̂h} ∈ χ, Γ1

̂f1 + G∗Γ0
̂f1 = 0,

Γ1
̂f1 + h′ = Γ0

̂f1 − h = 0

}

(6.20)

corresponding to the boundary relation

ΓG =
{{

̂f1 ⊕ ̂f2,

(

−Γ0
̂f1 + h

−G∗Γ0
̂f1 + h′

)}

:
̂f1 ∈ A∗, { ̂f2,̂h} ∈ χ,

Γ1
̂f1 + h′ = G(h − Γ0

̂f1)

}

. (6.21)

The necessity of the condition (6.19) follows immediately from (6.10) and (6.11) in Theorem 6.8.
To prove the sufficiency part, it is first shown that

mul ˜A−G∗ = {0} =⇒ mulHG = {0}. (6.22)

Indeed, if ̂f = ̂f1 ⊕ ̂f2 ∈ HT and ̂fi = {0, f ′
i}, i = 1, 2, then (6.20) implies that Γ1

̂f1 + G∗Γ0
̂f1 = 0,

and hence ̂f1 ∈ ˜A−G∗ . Since mul ˜A−G∗ = {0}, we have ̂f1 = 0. Now it follows from (6.20) that
{ ̂f2, 0} ∈ χ. Thus, ̂f2 ∈ S2 = ker χ, and hence ̂f2 = 0, since S2 is an operator. This proves (6.22).

Note now that ˜A (= ˜A−τ(λ)) in (5.8) coincides with ker ΓG
0 . Therefore, MG(λ) is a Weyl function

of the pair (HG, ˜A). Hence, if ˜A−G∗ , and thus HG is an operator, then condition (6.19) implies that
˜A is an operator by Proposition 3.17.

Note that, if the induced boundary relation χ in Theorem 5.3 is single-valued, then the linear
relation HG in (6.20) becomes

HG =
{

̂f1 ⊕ ̂f2 ∈ A∗ ⊕ T2 : Γ0
̂f1 − χ0

̂f2 = Γ1
̂f1 + χ1

̂f2 = Γ1
̂f1 + G∗Γ0

̂f1 = 0
}

. (6.23)
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6.3. Langer–Textorius Criterion

We present here a new explicit proof for the Langer–Textorius criterion in [40] by applying the
coupling method.

Following [40], introduce the operator function Qτ
LT with values in [H] by

Qτ
LT(λ; z0) := M(λ) − (M(λ) − M(z0)∗)(M(λ) + τ(λ))−1(M(λ) − M(z0)). (6.24)

It is noted in [40] that there is a symmetric restriction, say, HLT, of A(τ) such that the function
Qτ

LT(λ; z0) is a Q-function of the pair (HLT, A(τ)); here A(τ) is a minimal selfadjoint exit space
extension of A corresponding to τ(λ) in (6.5), i.e., one can take A(τ) = ˜A−τ(λ) = ˜A as in (5.8).
In the next proposition, the symmetric restriction HLT is expressed in explicit terms. This enables
us to derive the Langer–Textorius criterion from Proposition 6.13.

Proposition 6.14. Let the assumptions be as in Proposition 6.13, and let z0∈C+ be chosen.Then
(i) the linear relation HLT := H−M(z0) defined by (6.20) is a closed symmetric operator on

H1 ⊕ H2;
(ii) a linear relation ΓLT := Γ−M(z0) defined by (6.21) is a boundary relation for H∗

LT;
(iii) the Weyl function corresponding to ΓLT is given by

MLT(λ) = Qτ
LT(λ; z0) − 2Re M(z0); (6.25)

(iv) τ(λ) is admissible if and only if
s − lim

y↑∞
MLT(iy)/y = 0. (6.26)

Proof. The linear relation HLT coincides with HG in (6.20) for G = −M(z0). As was shown
in Proposition 6.13, HLT is a closed symmetric relation on H1 ⊕ H2. Moreover, the linear relation
˜AM(z0)∗ becomes ˜AM(z0)∗ = A ̂+ ̂Nz̄0 . Since Nz̄0 ∩ dom A = {0}, ˜AM(z0)∗ is an operator. Now it
follows from (6.22) that HLT is an operator, and criterion (iv) is obtained from Proposition 6.13.
Equation (6.25) is derived from (5.25), (6.18), and (6.24).

The functions Qτ
LT(λ; z0) and MLT(λ) are related by (6.25), and thus Proposition 6.14 (iv) yields

the following theorem in [40].

Theorem 6.15 [40]. Let z0 ∈ C+. Then the minimal selfadjoint extension A(τ) of A in the
Krĕın’s formula (6.5) is an operator if and only if

lim
y↑∞

(Qτ
LT(iy; z0)h, h)/y = 0, h ∈ H. (6.27)

Remark 6.16. If M ∈ Ru[H], then it follows from Proposition 6.14 (Theorem 6.15) that condi-
tion (6.26) (condition (6.27)) follows from conditions (3.28) and (3.29). Again, no direct (analytic)
proof of this fact is known to us; cf. Remark 6.9.

6.4. Langer–Textorius Problem
As mentioned above, Langer and Textorius [40] showed that a function Qτ

LT(λ; z0) of the form
(6.24) is a Q-function of a pair (HLT, A(τ)) of some symmetric operator HLT; the operator was
not described in [40]. In addition, they posed the question whether or not the operator HLT is
simple. The problem is studied in this subsection by using the above approach to the proof of
Theorem 6.15. This yields an affirmative answer to their question if we assume in addition that
A(τ) has a pure point spectrum and a negative answer in a more general situation, which is shown
by (counter-)examples. We stress that the considerations below substantially depend on the explicit
form (6.20) of the symmetric operator HLT, see Proposition 6.14.

Proposition 6.17. Suppose that the symmetric operators A and S2 introduced above are simple
and G is a bounded dissipative operator on H with ker(G − G∗) = {0}. Then

(i) the operator HG given by (6.20) has no eigenvalues;
(ii) if ˜A has pure point spectrum, σ( ˜A) = σpp( ˜A), then HG is simple;
(iii) if the multiplicity N( ˜A) of the spectrum of ˜A exceeds n±(A) = n < ∞, N( ˜A) > n, then HG

is not simple.
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Proof. (i) Assume for simplicity that χ can be decomposed in the form χ = (χ0, χ1). Then it
readily follows from (6.20) that

(Γ1 + G∗Γ0) ̂f1 = 0, (χ1 − G∗χ0) ̂f2 = 0, G∗Γ0
̂f1 − χ1

̂f2 = 0 (6.28)

for any ̂f1 ⊕ ̂f2 ∈ HG. Note that, if ker G∗ = {0}, then this system is equivalent to the system
(6.20) determining the operator HG.

Suppose that λ = λ̄ is an eigenvalue of HG and that fλ = f1λ ⊕ f2λ (
= 0) is the corresponding
eigenfunction, i.e., HGfλ = λfλ. It follows that equations (6.28) are satisfied with ̂f1λ = {f1λ, λf1λ}
and ̂f2λ = {f2λ, λf2λ} instead of ̂f1 and ̂f2, respectively, i.e.,

(Γ1 + G∗Γ0) ̂f1λ = 0, (χ1 − G∗χ0) ̂f2λ = 0. (6.29)

Further, A−G∗ = A∗� ker(Γ1 + G∗Γ0) is a maximal dissipative operator, because so is −G∗. There-
fore, in addition to the equation A−G∗f1λ = λf1λ, one has A−Gf1λ = (A−G∗)∗f1λ = λf1λ. The
latter relation is equivalent to (Γ1 + GΓ0) ̂f1λ = 0. Combining this with the first equation in (6.29)
gives (G − G∗)Γ0

̂f1λ = 0. Since ker(G − G∗) = {0}, one has Γ0
̂f1λ = 0. Combining this relation

with (6.29) yields Γ1
̂f1λ = Γ0

̂f1λ = 0, ̂f1λ ∈ A∗. Thus, ̂f1λ ∈ A and, since A is simple, it follows
that ̂f1λ = 0.

Similarly, starting with the second equation in (6.29) and using the simplicity of S2 gives ̂f2λ = 0.
Hence, fλ = f1λ ⊕ f2λ = 0, which contradicts the assumption.

(ii) If the operator HG is not simple, then its point spectrum is nonempty since σ( ˜A) is a purely
point spectrum. This contradicts (i), i.e., HG is simple.

(iii) By (6.20), HG is the restriction of the “coupling” ˜A = ˜A∗ given by HG = ˜A� ker(Γ1+G∗Γ0).
Therefore, n±(HG) = n±(A) = n. If HG is simple, then the multiplicity of the spectrum of every
selfadjoint extension of HG does not exceed n (see [1]). Therefore, HG is not simple.

Corollary 6.18. Let the conditions of Proposition 6.14 be satisfied, and let HLT := H−M(z0)

be the symmetric operator in (6.20) with G = −M(z0). If ˜A = A(τ) has a pure point spectrum, then
the operator HLT is simple.

Moreover, if n±(A) = n < ∞ and N( ˜A) > n, then HLT is not simple.

Proof. Note that M(z0) is a bounded dissipative operator and ker
(

Im M(z0)
)

= {0}; in fact,
0 ∈ ρ

(

Im M(z0)
)

. Thus, it suffices to apply Proposition 6.17 with G = −M(z0). The last statement
follows from Proposition 6.17 (iii).

Example 6.19. Let A = S1 and S2 be as in Example 5.9, and let HLT be a symmetric operator
defined by (6.23). Then the operator HLT is simple for every z0 ∈ C+. This is immediate from
Proposition 6.17 since both A and S2 are simple. However, this can readily be derived from the
definition of HLT by using the form of the Weyl function (see [20])) corresponding to the boundary
triplet ΠA = {C2,Γ0,Γ1} for A∗ defined in (5.18).

The next example shows that the operator HLT is not simple in general; furthermore, the mul-
tiplicity N( ˜A) of the spectrum of ˜A exceeds n±(A) = n < ∞; cf. Proposition 6.17.

Example 6.20. Let the symmetric operator Sj on Hj = L2(R) be defined by

Sj =
1
i

d

dx
, dom S2 = { fj ∈ W 1

2 (R) : fj(0) = 0 }, j = 1, 2, (6.30)

and let A = S1. Then Sj is densely defined, it has the defect numbers (1, 1), and the adjoint S∗
j is

given by the same differential expression on the domain dom S∗
j = W 1

2 (R+) ⊕ W 1
2 (R−); j = 1, 2.

Moreover, by setting

Γ0f1 =
1√
2
[f1(0+) − f1(0−)], Γ1f1 =

i√
2
[f1(0+) + f1(0−)], f1 ∈ dom S∗

1 ,
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one obtains a boundary triplet ΠA = {C,Γ0,Γ1} for A∗ = S∗
1 , and the corresponding Weyl function

is given by M(λ) = ±i, λ ∈ C±; cf. [10]. Similarly, associate a boundary triplet ΠS2 = {C, χ0, χ1}
for S∗

2 by setting
χ0f2 =

1√
2
[f2(0+) + f2(0−)], χ1f2 =

i√
2
[f2(0+) − f2(0−)], f2 ∈ dom S∗

2 .

Now the corresponding Weyl function is given by τ(λ) = −M(λ)−1 = M(λ) = ±i, λ ∈ C±. It can
readily be seen that the symmetric operator HLT = H−M(z0) in (6.23) with G = −M(z0) = −i and
z0 ∈ C+ is determined by the boundary conditions

f1(0+) = f2(0−) = 0, f1(0−) = −f2(0+), (6.31)

whereas ˜A−τ(λ) = ker ΓG
0 (see (6.21)) is determined by the boundary conditions

f1(0+) = f2(0−), f1(0−) = −f2(0+). (6.32)

The boundary conditions in (6.31) mean that HLT = ˜S1 ⊕ ˜A2, where the symmetric operator ˜S1

and the selfadjoint operator ˜A2 are determined by the same differential expression −iD on the
domains

dom ˜S1 =
{

f1,+ ⊕ f2,− ∈ W 1
2 (R) : f1(0+) = f2(0−) = 0

}

,

dom ˜A2 =
{

f1,− ⊕ f2,+ ∈ W 1
2 (R) : f1(0−) = −f2(0+)

}

,

respectively; cf. [15, Ex. 6.7]. Similarly, (6.32) shows that the coupling ˜A = ˜A−τ(λ) in Corollary 6.18
is of the form

˜A = ˜A1 ⊕ ˜A2, where dom ˜A1 =
{

f1,+ ⊕ f2,− ∈ W 1
2 (R) : f1(0+) = f2(0−)

}

.

Therefore, HLT has the defect numbers (1, 1) and is not simple. The multiplicity N( ˜A) of the
spectrum of ˜A is now clearly equal to 2. Note that the selfadjoint operators ˜A1 and ˜A2 can be
identified with each other (they are also unitarily equivalent to the selfadjoint extensions A0 =
ker Γ0 and A1 = ker Γ1) and, moreover, they are absolutely continuous with σac( ˜Aj) = R, j = 1, 2.
Finally, observe that here MLT(λ) = Qτ

LT(λ; z0) = M(λ), λ ∈ C \ R; see (6.25).

7. CHARACTERIZATION OF NAı̆MARK EXTENSIONS USING THE
SPECTRAL PARAMETER IN THE KRĔıN–NAı̆MARK FORMULA

In this section, selfadjoint exit space extensions of a densely defined symmetric operator A on H

are studied. The main result gives a description of the set of all minimal exit space extensions ˜A

of A such that dom ˜A ∩ H = dom ˜A in terms of the spectral parameter τ(·) corresponding to ˜A in
the Krĕın–Năımark formula (6.5).

7.1. Definition of Năımark Extensions

Let A be a closed densely defined symmetric operator on a Hilbert space H with arbitrary defect
numbers, and let ˜A be a selfadjoint extension of A acting on the Hilbert space ˜H ⊃ H. Assign to ˜A

the relations Sj and Tj , j = 1, 2, by Sj = ˜A∩H2
j and by (5.1) with H1 = H×{0} and H2 = ˜H�H.

Then A ⊂ S1 = T ∗
1 and T1 ⊂ S∗

1 ⊂ A∗. Since A is densely defined, the relations T1, S∗
1 , and A∗

are operators on H, and mul ˜A = {0} × mulS2. If the selfadjoint extension ˜A is minimal, then
mul ˜A = {0}. Recall the Năımark classification of the minimal exit space extensions ˜A of A.

Definition 7.1 [1, 43]. Let A (
= A∗) be a closed densely defined symmetric operator on a
Hilbert space H with arbitrary defect numbers, and let ˜A be a minimal selfadjoint extension of A

on a Hilbert space ˜H (⊃ H). Then ˜A is said to be an extension

(i) of the first kind if dom ˜A ∩ H = dom ˜A;
(ii) of the second kind if dom ˜A ∩ H = dom A;
(iii) of the third kind if domA � dom ˜A ∩ H � dom ˜A.

The set of extensions of A of the first, second, and third kind is denoted by Nai1(A), Nai2(A), and
Nai3(A), respectively.
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Note that a selfadjoint extension ˜A of the first kind is a canonical extension, i.e., ˜A ⊂ H × H,
due to the minimality of the extension ˜A. Let ˜A be a minimal selfadjoint extension of A. We have
dom ˜A ∩ H ⊂ dom A∗. Define the restriction N1 by

N1 := A∗� (dom ˜A ∩ H). (7.1)

Proposition 7.2. Let A be a closed densely defined symmetric operator on H with arbitrary
defect numbers, let ˜A be a minimal selfadjoint extension of A acting on ˜H, and let N1 be defined
by (7.1). Then N1 is a densely defined symmetric operator on H given by N1 = PH

˜A�H such that

A ⊂ S1 ⊂ N1 ⊂ T1. (7.2)

Further, if Δ is the main transform of ˜A defined by (5.5), then ker Δ0 = N1. Moreover,

(i) ˜A ∈ Nai1(A) 
= ∅ if and only if N1 = ˜A;
(ii) ˜A ∈ Nai2(A) 
= ∅ if and only if N1 = A;
(iii) ˜A ∈ Nai3(A) 
= ∅ if and only if N1 
= ˜A and N1 
= A.

In particular, if A has the defect numbers (1, 1), then ˜A ∈ Nai1(A) ( ˜A ∈ Nai2(A), ˜A ∈ Nai3(A)) if
and only if A 
= S1 (A = S1 = N1, A = S1 
= N1, respectively).

Proof. As a minimal selfadjoint extension of A, ˜A (and thus PH
˜A�H as well) is an operator.

Clearly, dom PH
˜A�H = dom ˜A∩H and A ⊂ PH

˜A�H, and hence PH
˜A�H is a densely defined operator

on H. Since ˜A is selfadjoint, Δ = J −1( ˜A) : H2
1 → H2

2 is a unitary relation with

S1 = ker Δ = ker Δ0 ∩ ker Δ1,

and we clearly have PH
˜A�H = ker Δ0, where Δ0 and Δ1 are defined in (3.9). Therefore, PH

˜A�H is
symmetric and A ⊂ PH

˜A�H ⊂ (PH
˜A�H)∗ ⊂ A∗. Thus, PH

˜A�H = A∗� (dom ˜A∩H) = N1. Moreover,
since T1 = dom Δ, we obtain (7.2).

Assertions (i)–(iii) are clear from (7.1) and Definition 7.1. In particular, let the defect numbers of
A be (1, 1). If A 
= S1, then S1 (and therefore, S2 as well) is selfadjoint, which gives ˜H = H (by the
simplicity of S2), i.e., ˜A ∈ Nai1(A). Conversely, if ˜A ∈ Nai1(A), then we clearly have S1 = N1 = ˜A

and A 
= S1 (since A 
= A∗ by definition). The assertions for ˜A ∈ Naij(A), j = 2, 3, are now obvious.

Proposition 7.3. Let A be a densely defined symmetric operator on a Hilbert space H with
arbitrary defect numbers. Then

(i) Nai1(A) 
= ∅ if and only if A has equal defect numbers;
(ii) Nai2(A) 
= ∅;
(iii) Nai3(A) 
= ∅ if and only if A has positive defect numbers.

In particular, if A has positive defect numbers, then A has extensions of the second and third kind,
whereas, if A has defect numbers (n, 0) or (0, n), n > 0, then all minimal selfadjoint extensions of
A are of the second kind.

Proof. (i) A first-kind extension ˜A ∈ Nai1(A) is simply a canonical extension of A acting on
the original space, and thus ˜H = H by the minimality of ˜A.

(ii) The relation Nai2(A) 
= ∅ was proved for every densely defined symmetric operator A by
Năımark in [43].

(iii) Let ˜A be a minimal selfadjoint exit space extension of A. If the defect numbers of A are (n, 0)
or (0, n), n > 0, then A is a maximal symmetric operator, and hence N1 = A (because N1 ⊃ A is
symmetric by Proposition 7.2). Therefore, in this case, ˜A ∈ Nai2(A).

Conversely, if both the defect numbers of A are positive, then A admits a proper (even maximal)
symmetric extension H acting on the original space H. If H is not selfadjoint, then every minimal
exit space extension of H belongs to Nai3(A). It remains to consider the case in which n±(A) = 1,
and thus every proper symmetric extension H of A on H is selfadjoint. Let {C,Γ0,Γ1} be an ordinary
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boundary triplet for A∗. Then the main transform ˜A = J (Γ) of Γ (see (2.12)) is the selfadjoint
relation ˜A given by

˜A = J (Γ) =
{{( f

Γ0
̂f

)

,
( f ′

−Γ1
̂f

)}

: ̂f ∈ A∗
}

. (7.3)

Clearly, ˜A is a minimal exit space extension of A acting on H⊕ C. Moreover, S1 = ˜A ∩H2 = A,
and N1 = ker Γ0 ⊃ A is a selfadjoint extension of A acting on H. By Proposition 7.2, this means
that ˜A ∈ Nai3(A).

7.2. Geometric Characterizations of Năımark Extensions

The exit space extensions of the second kind, and thus also of the third kind, can be characterized
in terms of the operators S1 and T2 defined in (5.1).

Theorem 7.4. Let A be a densely defined symmetric operator on H with arbitrary defect num-
bers, and let ˜A be a minimal selfadjoint extension of A. Then

˜A ∈ Nai2(A) ⇐⇒ S1 = A and mulT2 = {0}. (7.4)

In particular, if ˜A ∈ Nai2(A), then n±(S2) = n∓(A).

Proof. Let S1 and T2 be defined by (5.1). Then

mulT2 =
{

h′ ∈ H2 :
{(

f
0

)

,
(

f ′

h′

)}

∈ ˜A
}

. (7.5)

Comparing this with the description of N1 = PH
˜A�H in Proposition 7.2, one concludes that

S1 = N1 ⇐⇒ mul T2 = {0}. (7.6)

The equivalence (7.4) follows now from part (ii) of Proposition 7.2.

If ˜A ∈ Nai2(A), then S1 = A by (7.4), and n±(S2) = n∓(A) by Lemma 5.1.

Let A be a symmetric operator on H. An exit space extension ˜A = ˜A∗ of A acting on ˜H (⊃ H)
is said to be finite-dimensional if dim(˜H � H) < ∞. It is clear that A has finite-dimensional
selfadjoint extensions if and only if n+(A) = n−(A). The next proposition shows that all minimal
finite-dimensional extensions of A either are canonical (i.e., ˜A ∈ Nai1(A)) or belong to Nai3(A).

Proposition 7.5. Let A be a densely defined symmetric operator on H with arbitrary defect
numbers, and let ˜A be a minimal selfadjoint extension of A. Assume that T1 is closed. Then

˜A ∈ Nai2(A) ⇐⇒ S1 = A and domS2 = H2. (7.7)

Further, if ˜A ∈ Nai2(A), then S2 is an unbounded densely defined operator on H2. In particular,
the set Nai2(A) contains no finite-dimensional extensions of A.

Proof. By Lemma 5.1 (ii), T1 and T2 are closed or not closed simultaneously. Hence T2 is closed,
and T2 = S∗

2 . In this case, mulT2 = {0} if and only if dom S2 = H2. Therefore, the equivalence
in (7.7) follows from Theorem 7.4.

If ˜A ∈ Nai2(A), then S2 is a densely defined operator on H2. Further, S2 is unbounded. Otherwise
dom S2 = H2, since S2 is closed, and this implies that S2 is selfadjoint. This leads to a contradiction
because n±(S2) = n∓(A) by Theorem 7.4.

If ˜A is a minimal exit space extension of A and dimH2 < ∞, then S2 is a bounded nondensely
defined operator. Hence, in this case, ˜A ∈ Nai3(A).

If A has finite defect numbers, then the Năımark extensions of the second kind can be charac-
terized by means of the operator S2 by itself.

Corollary 7.6. Let A be a densely defined symmetric operator on H with defect numbers
n±(A) < ∞ and let ˜A be a minimal selfadjoint extension of A. Then

˜A ∈ Nai2(A) ⇐⇒ domS2 = H2 and n±(S2) = n∓(A). (7.8)
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Proof. Since n±(A) < ∞, T1 is closed as a finite-dimensional extension of A. Hence, the impli-
cation ⇒ follows from Theorem 7.4 and Proposition 7.5.

Conversely, assume that dom S2 = H2 and n±(S2) = n∓(A) < ∞. Then T2 is closed, and
T2 = S∗

2 is an operator, since dom S2 = H2. Further, n±(S1) = n±(A) < ∞ by Lemma 5.1 and,
since S1 ⊃ A, this yields A = S1. Therefore, ˜A ∈ Nai2(A) by Theorem 7.4.

Remark 7.7. (a) If n±(A) = ∞, then the relations domS2 = H2 and n±(S2) = ∞ do not imply
the inclusion ˜A ∈ Nai2(A), even if T1 is closed.

To see this, consider two symmetric operators A′ and A′′ on H′
1 and H′′

1 , respectively, with
n±(A′) = ∞ and n±(A′′) = n < ∞. Let ˜A′ ∈ Nai2(A′) and ˜A′′ ∈ Nai3(A′′) be their selfadjoint
extensions acting on H′ = H′

1 ⊕ H′
2 and H′′ = H′′

1 ⊕ H′′
2 , respectively. In addition, assume that T ′

1

is closed. Let domS′′
2 = H′′

2 . Then, by Proposition 7.5, domS′
2 = H2, and S2 = S′

2 ⊕ S′′
2 acts on

H2 = H′
2 ⊕ H′′

2 and is densely defined. Moreover, n±(S2) = n±(S′
2) + n±(S′′

2 ) = ∞. On the other
hand, ˜A = ˜A′ ⊕ ˜A′′ ∈ Nai3(A), where A = A′ ⊕ A′′.

(b) Moreover, if n±(A) = ∞ and T1 is not closed, then domS2 need not be dense in H2, although
˜A ∈ Nai2(A).

7.3. Examples of Năımark Extensions
This subsection contains some illustrative examples concerning the Năımark extensions of several

differential operators.

Example 7.8. Let A be the operator on L2(0, 1) generated by the differential expression −D2 as
defined in Example 5.8. The boundary triplet defined by Γ0f = f(0) and Γ1f = f ′(0), f ∈ dom A∗,

induces a one-dimensional exit space extension ˜A of A as in (7.3), namely,

˜A =
{{(

f
f(0)

)

,
( −f ′′

−f ′(0)

)}

: f ∈ W 2
2 (0, 1), f(1) = 0

}

. (7.9)

Here dom ˜A ∩ H =
{

f ∈ W 2
2 (0, 1) : f(0) = f(1) = 0

}

� domA and ˜A ∈ Nai3(A).

Exit space extensions of the second kind naturally arise under restrictions of domains of differ-
ential operators or extensions involving interface conditions, as is shown by the following examples.

Example 7.9. Let S2 be the symmetric operator in L2(−1, 0), and let ˜A be the selfadjoint
operator (coupling) on L2(−1, 1) generated by the differential expression −D2 as defined in Exam-
ple 5.8; cf. (5.16), (5.17). If f ∈ dom ˜A∩L2(0, 1), then we clearly have f ∈ AC[−1, 1] and f(x) = 0
for all −1 � x � 0. Hence, in this case, dom ˜A ∩ L2(0, 1) = dom A, and therefore ˜A ∈ Nai2(A).

Example 7.10. Consider the differential expression

l(x,D) =
n

∑

j=0

(−1)j(dj/dxj)pn−j(x)(dj/dxj) (7.10)

in H = L2(R) with real coefficients satisfying the following integrability conditions:

p0 = 1, pn ∈ L1(R) ∩ L∞(R), pn−j ∈ W j
1 (R), j = 1, . . . , n − 1. (7.11)

The operator ˜A generated on L2(R) by the differential expression (7.10) with the domain dom ˜A =
W 2n

2 (R) is selfadjoint (see [44, Sec. 23, Th. 3]). The orthogonal decomposition H = H1 ⊕ H2 with
H1 := L2(0, 1) and H2 := L2(R\ [0, 1]) induces the operators Sj and Tj , j = 1, 2, according to (5.1).
Let A = Amin be the minimal (symmetric) operator generated on H1 = L2(0, 1) by the differential

expression (7.10) on the domain dom A =
◦
W 2n

2 (0, 1). Since the Sobolev space W 2n
2 (0, 1) can be

described by W 2n
2 (0, 1) =

{

f : f (j) ∈ AC[0, 1], j = 0, 1, . . . , 2n − 1, f (2n) ∈ L2(0, 1)
}

, we readily
conclude that

dom N1 = dom ˜A ∩ H1 = dom ˜A ∩ L2(0, 1) =
◦
W 2n

2 (0, 1) = dom A. (7.12)

Thus, A = S1 = N1 and ˜A ∈ Nai2(A) (by Proposition 7.2). Since

P1(dom ˜A) = P1W
2n
2 (R) = W 2n

2 (0, 1),
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we obtain T1 = A∗ = Amax, and thus T1 is closed. Similarly, we can see that

dom S2 = dom ˜A ∩ H2 =
◦

W 2n
2 (−∞, 0) ⊕

◦
W 2n

2 (1,∞), S2 = S′
2 ⊕ S′′

2 ,

where S′
2 and S′′

2 are the minimal operators generated by l(x,D) on L2(−∞, 0) and L2(1,∞),
respectively. In particular, S2 is densely defined (cf. Proposition 7.5) and, moreover, T2 = S∗

2 =
S′

2
∗ ⊕ S′′

2
∗ with

dom T2 = P2(dom ˜A) = P2 W 2n
2 (R) = W 2n

2 (−∞, 0) ⊕ W 2n
2 (1,∞).

Example 7.11. Consider the differential expression (7.10) on H := L2(0,∞) with the same
integrability conditions as in (7.11). Let ˜A be the operator generated on H by the differential
expression (7.10) with the following Dirichlet boundary conditions at zero:

dom ˜A =
{

f ∈ W 2n
2 (R+) : f(0) = · · · = f (n−1)(0) = 0

}

.

The above assumptions on the coefficients pj imply that the operator ˜A is selfadjoint. The orthog-
onal decomposition H = H1 ⊕H2 with H1 := L2(0, 1) and H2 := L2(1,∞) induces the operators Sj

and Tj , j = 1, 2, according to (5.1). We have S1 = N1 again, see (7.6), and domS1 = dom N1 =
dom ˜A ∩ L2(0, 1) is given by

{

f ∈ W 2n
2 (0, 1) : f(0) = · · · = f (n−1)(0) = f(1) = · · · = f (2n−1)(1) = 0

}

.

Here n±(S1) = n and S1 ⊃ A and dim S1/A = n in view of (7.12), and ˜A ∈ Nai3(A).

Example 7.12. Consider the differential operator in Example 1.4. We have S1 = N1 again,
and f ∈ domS1 = dom ˜A ∩ L2(Ω) if and only if f ∈ W 2

2 (Rn) and f(x) = 0 for x ∈ Ω2. On the
other hand, since ∂Ω is smooth, the trace theorem (see [53]) implies that, for each f ∈ W 2

2 (Rn),
there exist traces

{

γ0f := f�∂Ω, γ1f := (∂f/∂n)� ∂Ω
}

∈ W
3/2
2 (∂Ω) × W 1/2(∂Ω).

If f ∈ dom S1, then f ∈ W 2
2 (Ω1) and γ0f = γ1f = 0 because f(x) = 0 for x ∈ Ω2. Thus, f ∈

◦
W 2

2(Ω1)
(again by the trace theorem), and consequently

dom S1 = dom ˜A ∩ L2(Ω) = W 2
2 (Rn) ∩ L2(Ω) =

◦
W 2

2(Ω). (7.13)

Combining this relation with domA =
◦

W 2
2(Ω), we see that N1 = S1 = A, and hence ˜A ∈ Nai2(A).

In contrast to the previous example, the operators Tj , j = 1, 2, are not closed here. As a conclusion,
dom T1 = W 2

2 (Ω) is a proper subset of domAmax = domS∗
1 , and the maximal operator Amax

generated on L2(Ω) by the differential expression (1.12) depends on the coefficients aij .

7.4. Analytic Characterization of Năımark Extensions of the Second Kind

In this subsection, exit space extensions of the second kind are characterized in terms of the
spectral parameter τ(·) arising in the Krĕın–Năımark formula (6.5) for the generalized resolvents.
We stress that the treatment of τ(·) as the Weyl family (Weyl function) of the induced boundary
relation χ constructed for S∗

2 in Theorem 5.3 (see Proposition 5.6) plays a crucial role when es-
tablishing the relationship between geometric and analytic considerations. The treatment below is
divided into two cases.

7.4.1. Case of bounded τ(·) ∈ R[H]. Selfadjoint exit space extensions of the second kind
generated by bounded spectral parameters τ(·) ∈ R[H] are characterized by the following theorem.

Theorem 7.13. Let A be a closed densely defined symmetric operator on H with equal defect
numbers n±(A) � ∞, and let ˜A = ˜A−τ(λ) be a minimal exit space extension of A corresponding to
τ(λ) in (6.5). Moreover, assume that τ(·) ∈ R[H]. Then ˜A ∈ Nai2(A) if and only if the following
two conditions are satisfied :

lim
y↑∞

y−1τ(iy) = 0 and lim
y↑∞

y Im (τ(iy)h, h) = ∞, h ∈ H \ {0}. (7.14)
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Proof. Let τ(·) ∈ R[H]. Then, by Proposition 5.6, τ(·) is the Weyl function of the induced
boundary relation χ constructed for S∗

2 in Theorem 5.3. Since τ(·) ∈ R[H], the boundary relation
χ satisfies condition (3.26), and hence it has also properties (B1)–(B3); see Proposition 3.16.

Now assume that ˜A = ˜A−τ(λ) ∈ Nai2(A). Then S1 = A and mulT2 = {0} by Theorem 7.4.
Proposition 5.11 shows that χ is single-valued. Further, applying part (ii) of Proposition 3.17 to χ,
we see from mulT2 = {0} that τ(λ) satisfies conditions (3.28) and (3.29) with H0 = mulχ0 = {0},
i.e., (7.14) holds.

Conversely, assume that τ(·) ∈ R[H] satisfies the conditions in (7.14). The second condition in
(7.14) implies that ker Im τ(iy) = {0}. Hence, τ(λ) ∈ R[H] is strict, and thus χ is single-valued.
It follows from Proposition 5.11 that S1 = A. According to Proposition 3.17, conditions (7.14)
mean that mulT2 = {0}. Therefore, ˜A = ˜A−τ(λ) ∈ Nai2(A) by Theorem 7.4.

The following analytic characterizations are related to Proposition 7.5 and Corollary 7.6.

Proposition 7.14. Let A be a closed densely defined symmetric operator in H with equal defect
numbers n±(A) � ∞, and let ˜A = ˜A−τ(λ) be a minimal exit space extension of A corresponding to
τ(λ) in (6.5). Then the following statements are equivalent :

(i) ˜A ∈ Nai2(A) and T1 is closed ;
(ii) τ(·) ∈ Ru[H] and the conditions in (7.14) are satisfied.

Moreover, if T1 is closed (in particular, if n±(A) = n < ∞), then the following assertions are
equivalent :

(iii) ˜A ∈ Nai2(A);
(iv) τ(·) ∈ Ru[H] and the conditions in (7.14) are satisfied ;
(v) τ(·) ∈ R[H] and the conditions in (7.14) are satisfied.

Proof. (i) ⇒ (ii) Let ˜A ∈ Nai2(A), and let T1 be closed. Then S1 = A and domS2 = H2

by Proposition 7.5. The induced boundary relation χ : H2
2 → H2 is single-valued by Proposi-

tion 5.11. Moreover, dom χ = T2 by construction (see Theorem 5.3) and, since T1 is closed, we have
T2 = S∗

2 by parts (i), (ii) of Lemma 5.1. Therefore, ran χ = H2, which means that τ(·) ∈ Ru[H];
see [15, Prop. 5.3]. The conditions in (7.14) now follow from Theorem 7.13.

(ii) ⇒ (i) If τ(·) ∈ Ru[H], then ran χ = H2 is closed. Therefore, T2 = dom χ and T1 are also
closed by Proposition 2.4 and Lemma 5.1. The assertion ˜A ∈ Nai2(A) follows from Theorem 7.13.

If T1 is closed, then (iii), (iv), and (v) are equivalent. This follows from the equivalence of (i)
and (ii) together with Theorem 7.13. Finally, note that, if n±(A) = n < ∞, then T1 is closed;
cf. Corollary 7.6.

7.4.2. General case τ(·) ∈ ˜R(H). The general case, where τ(·) ∈ ˜R(H) is an arbitrary Nevan-
linna family, is reduced to the case of τ(·) ∈ R[H]. To this end, we use Proposition 5.15, where
a suitable “coupling” of the boundary relation χ : H2

2 → H2 whose Weyl family is τ(·) with an
appropriate boundary triplet Γ′ : H2

1 → H2 is considered.

Theorem 7.15. Let A be a closed densely defined symmetric operator on H with equal defect
numbers n+(A) = n−(A), and let ˜A = ˜A−τ(λ) be a minimal exit space extension of A corresponding
to τ(λ) in (6.5). In this case, ˜A ∈ Nai2(A) if and only if τ(·) ∈ Rs(H) and the operator function

τ (1)(λ) = −(τ(λ) − 1/λ)−1 (7.15)

satisfies the limit conditions in (7.14), i.e.,

lim
y↑∞

y−1τ (1)(iy) = 0 and lim
y↑∞

y Im
(

τ (1)(iy)h, h
)

= ∞, h ∈ H \ {0}. (7.16)

Proof. By Proposition 5.11, S1 = A holds if and only if τ(·) ∈ Rs(H) or, equivalently, if and
only if the induced boundary relation χ is single-valued. By Theorem 7.4, it remains to prove that
the limit conditions in (7.16) are equivalent to mulT2 = {0}.
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Consider a trivial symmetric operator A′ = {0, 0} in H, which implies that A′∗ = H2, and define
a boundary triplet Π′ = {H,Γ′

0,Γ
′
1} for A′∗ by the rule

Γ′
0
̂f = f ′, Γ′

1
̂f = −f, ̂f = {f, f ′} ∈ H2. (7.17)

In this case, ker Γ′
1 = {0}×H is selfadjoint extension of A′ of the form (5.40), and the corresponding

Weyl function is −(1/λ)IH. Hence, one can apply Proposition 5.15 to the boundary relation χ
(ker χ = S2, dom χ = T2) and the boundary triplet Π′ (instead of Π). Then the linear relation H(1)

of the form (5.44) determines a single-valued symmetric operator on H ⊕ H2 by Proposition 5.15
(ii) because mulS2 = {0}. According to Theorem 5.14, the operator function τ (1)(λ) in (7.15) is the
Weyl function corresponding to the boundary relation Γ(1) whose domain T (1) is given by (5.41).
Further, by Theorem 5.14, the boundary relation Γ(1) satisfies conditions (B1)–(B3), and (5.35)
shows that Γ(1) is single-valued, since χ is single-valued. Proposition 5.15 (i) shows that

mul T2 = {0} ⇐⇒ mulT (1) = {0}. (7.18)

Finally, it follows from Proposition 3.17 that mulT (1) = {0} if and only if the corresponding Weyl
family τ (1)(·) satisfies the limit conditions (7.16), since H0 = mul Γ(1)

0 = {0} here. In view of (7.18),
this completes the proof.

Combining Theorem 7.13 with Theorems 3.6 and 7.15 leads to the following result (we again
know no direct analytic proof, even in the matrix case).

Proposition 7.16. Let τ(·) ∈ R[H] satisfy conditions (7.14). Then the function
τ (1)(λ) := −

(

τ(λ) − 1/λ
)−1

satisfies conditions (7.16). Conversely, if τ (1)(·) satisfies conditions (7.16) and, in addition, τ(·) ∈
Rs[H], then τ(·) satisfies conditions (7.14).

Proof. By Theorem 3.6, there exists a boundary relation such that the corresponding Weyl
function is τ(·). If τ(·) ∈ R[H] satisfies conditions (7.14), then τ(·) ∈ Rs[H] and ˜A = ˜A−τ ∈ Nai2(A)
by Theorem 7.13. Theorem 7.15 now shows that τ (1)(·) satisfies conditions (7.16).

Conversely, if τ (1)(·) satisfies the conditions in (7.16) and if τ(·) ∈ Rs[H], then we have
˜A = ˜A−τ ∈ Nai2(A) by Theorem 7.15, and (7.14) holds by Theorem 7.13.

If τ(·) ∈ Rs(H) \ Rs[H], it seems natural to characterize the inclusion ˜A = ˜A−τ(λ) ∈ Nai2(A) in
terms of strong resolvent limits of τ(·), i.e., to express them in terms of the function

τ (2)(·) := −(τ(·) + i · I)−1

instead of the limits of τ (1)(·) in (7.16). Using the arguments of Theorems 7.15 and 5.14 and
replacing the boundary triplet Π′ with the boundary triplet Π′′ corresponding to the Weyl function
W ′′(λ) = iIH, λ ∈ C+ (see Example 6.20), we obtain the following necessary condition only.

Proposition 7.17. Let the conditions of Theorem 7.15 be satisfied and assume that
˜A = ˜A−τ(λ) ∈ Nai2(A).

Then the operator function
τ (2)(·) = −(τ(·) + i · I)−1

satisfies the analogs of the limit conditions in (7.16).

Remark 7.18. The converse to Proposition 7.17 fails to hold even in the scalar case, because
the operator H(1) can be densely defined despite the fact that the operator A ⊕ S2 is not. For
instance, if τ(λ) = −1/λ, then τ (2)(λ) = λ(1− iλ)−1 satisfies the limit conditions similar to (7.16),
whereas τ(·) does not satisfy these properties. This partially explains the choice of τ (1)(·) instead
of τ (2)(·) in Theorem 7.15.
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33. I. S. Kac and M. G. Krĕın, “R-Functions – Analytic Functions Mapping the Upper Halfplane into Itself,”
Supplement to the Russian edition of F.V. Atkinson, Discrete and Continuous Boundary Problems (Mir,
Moscow, 1968) [in Russian]; English translation: Amer. Math. Soc. Transl. Ser. 2 103, 1–18 (1974).

34. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin–Heidelberg–New York, 1966).
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