8,461 research outputs found

    How genealogies are affected by the speed of evolution

    Full text link
    In a series of recent works it has been shown that a class of simple models of evolving populations under selection leads to genealogical trees whose statistics are given by the Bolthausen-Sznitman coalescent rather than by the well known Kingman coalescent in the case of neutral evolution. Here we show that when conditioning the genealogies on the speed of evolution, one finds a one parameter family of tree statistics which interpolates between the Bolthausen-Sznitman and Kingman's coalescents. This interpolation can be calculated explicitly for one specific version of the model, the exponential model. Numerical simulations of another version of the model and a phenomenological theory indicate that this one-parameter family of tree statistics could be universal. We compare this tree structure with those appearing in other contexts, in particular in the mean field theory of spin glasses

    A uniform isotopic and chemical signature of dust exported from Patagonia: Rock sources and occurrence in southern environments

    Get PDF
    Patagonia is considered to be the most important source of dust from South America that is deposited in surrounding areas, and we present here a systematic Sr and Nd isotopic study of sediment currently being exported. Eolian and suspended riverine sediments from Patagonia have a homogeneous chemical and isotopic composition that results from the mixing of by-products from explosive Andean volcanism, derived from the extensive Jurassic silicic Province of Chon Aike and pyroclastic materials from the basic to intermediate southern Andean Quaternary arc, which are easily denudated and dispersed. The main Andean uplift and the glaciations that began in the Late Tertiary account for the extensive distribution of these sediments in the extra-Andean region. The present geochemical signature of Patagonian sediments was produced during the Pleistocene, along with the onset of the southern Andean explosive arc volcanism. Previously published compositions of sediments from other southern South American source regions, assumed to be representative of Patagonia, are distinct from our data. Considering the alleged importance of Patagonia as a dust source for different depositional environments in southern latitudes, it is surprising to verify that the chemical and isotopic signatures of Patagonian-sourced sediments are different from those of sediments from the Southern Ocean, the Pampean Region or the Antarctic ice. Sediments from these areas have a crustal-like geochemical signature reflecting a mixed origin with sediment from other southern South American sources, whereas Patagonian sediments likely represent the basic to intermediate end-member composition

    Controlling the composition of a confined fluid by an electric field

    Full text link
    Starting from a generic model of a pore/bulk mixture equilibrium, we propose a novel method for modulating the composition of the confined fluid without having to modify the bulk state. To achieve this, two basic mechanisms - sensitivity of the pore filling to the bulk thermodynamic state and electric field effect - are combined. We show by Monte Carlo simulation that the composition can be controlled both in a continuous and in a jumpwise way. Near the bulk demixing instability, we demonstrate a field induced population inversion in the pore. The conditions for the realization of this method should be best met with colloids, but being based on robust and generic mechanisms, it should also be applicable to some molecular fluids.Comment: 9 pages, 5 figure

    Data sources for rescuing the rich heritage of Mediterranean historical surface climate data

    Get PDF
    10.1002/gdj3.4Availability of long-term and high-quality instrumental climate records is still insufficient and the rich heritage of meteorological surface observations is largely underexploited in many parts of the world. This is particularly striking over the Greater Mediterranean region (GMR), where meteorological observations have been taken since the 18th century at some locations. The lack of high quality and long series here is despite this region being regarded as a climate change hot spot. This article mainly assesses relevant sources containing Mediterranean historical climate data and metadata either from online repositories worldwide or physical archives, with the emphasis here on the rich holdings kept at French archives. A particular case study is the data rescue (DARE) program undertaken by the Algerian National Meteorological Service, as well as some of the past and ongoing projects and initiatives aimed at enhancing climate data availability and accessibility over the GMR. Our findings point to the high potential for undertaking DARE activities over the GMR and the need for bringing longer and higher quality climate time series to support a diverse number of scientific and technical assessments and policies

    Conceptual Frameworks for Multimodal Social Signal Processing

    Get PDF
    This special issue is about a research area which is developing rapidly. Pentland gave it a name which has become widely used, ‘Social Signal Processing’ (SSP for short), and his phrase provides the title of a European project, SSPnet, which has a brief to consolidate the area. The challenge that Pentland highlighted was understanding the nonlinguistic signals that serve as the basis for “subconscious discussions between humans about relationships, resources, risks, and rewards”. He identified it as an area where computational research had made interesting progress, and could usefully make more

    d13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina)

    Get PDF
    The main Patagonian rivers (Colorado, Negro, Chubut, Deseado, Coyle, Chico, Santa Cruz and Gallegos) were sampled between September 1995 and November 1998 to determine their chemical and isotopic compositions, the origins of the suspended and dissolved river loads and their inputs to the South Atlantic Ocean. This paper focuses on the dissolved inorganic carbon (DIC) transport and its υ13C isotopic signature. The υ13CDIC values vary between 12Ð8 and 1Ð8‰ and allow one to distinguish two river groups: (i) the Colorado, Negro, Chubut and Santa Cruz, which display the highest values and the lowest seasonal variations; (ii) the Deseado, Coyle, Chico and Gallegos, which show the lowest values and the highest seasonal variations. For the first group, υ13CDIC is mainly controlled by important exchanges between the river waters and atmospheric CO2, due to the presence of lakes and dams. For the second group, υ13CDIC also appears to be controlled by the oxidation of organic carbon, showing a negative relationship between υ13CDIC and the dissolved organic carbon. These biogeochemical processes interfere with the contribution of carbonate and silicate weathering to the riverine DIC and do not allow use of υ13CDIC alone to distinguish these contributions. The annual DIC flux exported by Patagonian Rivers to the South Atlantic Ocean averages 621 ð 109 g. of C, i.e. a specific yield of 2Ð7 g m2 year1. The mean υ13CDIC can be estimated to 4Ð9‰, which is high compared with other rivers of the world

    Deterministic reaction models with power-law forces

    Full text link
    We study a one-dimensional particles system, in the overdamped limit, where nearest particles attract with a force inversely proportional to a power of their distance and coalesce upon encounter. The detailed shape of the distribution function for the gap between neighbouring particles serves to discriminate between different laws of attraction. We develop an exact Fokker-Planck approach for the infinite hierarchy of distribution functions for multiple adjacent gaps and solve it exactly, at the mean-field level, where correlations are ignored. The crucial role of correlations and their effect on the gap distribution function is explored both numerically and analytically. Finally, we analyse a random input of particles, which results in a stationary state where the effect of correlations is largely diminished

    Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions

    Full text link
    For Anderson localization on the Cayley tree, we study the statistics of various observables as a function of the disorder strength WW and the number NN of generations. We first consider the Landauer transmission TNT_N. In the localized phase, its logarithm follows the traveling wave form lnTNlnTNˉ+lnt\ln T_N \simeq \bar{\ln T_N} + \ln t^* where (i) the disorder-averaged value moves linearly ln(TN)ˉNξloc\bar{\ln (T_N)} \simeq - \frac{N}{\xi_{loc}} and the localization length diverges as ξloc(WWc)νloc\xi_{loc} \sim (W-W_c)^{-\nu_{loc}} with νloc=1\nu_{loc}=1 (ii) the variable tt^* is a fixed random variable with a power-law tail P(t)1/(t)1+β(W)P^*(t^*) \sim 1/(t^*)^{1+\beta(W)} for large tt^* with 0<β(W)1/20<\beta(W) \leq 1/2, so that all integer moments of TNT_N are governed by rare events. In the delocalized phase, the transmission TNT_N remains a finite random variable as NN \to \infty, and we measure near criticality the essential singularity ln(T)ˉWcWκT\bar{\ln (T)} \sim - | W_c-W |^{-\kappa_T} with κT0.25\kappa_T \sim 0.25. We then consider the statistical properties of normalized eigenstates, in particular the entropy and the Inverse Participation Ratios (I.P.R.). In the localized phase, the typical entropy diverges as (WWc)νS(W-W_c)^{- \nu_S} with νS1.5\nu_S \sim 1.5, whereas it grows linearly in NN in the delocalized phase. Finally for the I.P.R., we explain how closely related variables propagate as traveling waves in the delocalized phase. In conclusion, both the localized phase and the delocalized phase are characterized by the traveling wave propagation of some probability distributions, and the Anderson localization/delocalization transition then corresponds to a traveling/non-traveling critical point. Moreover, our results point towards the existence of several exponents ν\nu at criticality.Comment: 28 pages, 21 figures, comments welcom

    Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization

    Full text link
    We consider a family of models describing the evolution under selection of a population whose dynamics can be related to the propagation of noisy traveling waves. For one particular model, that we shall call the exponential model, the properties of the traveling wave front can be calculated exactly, as well as the statistics of the genealogy of the population. One striking result is that, for this particular model, the genealogical trees have the same statistics as the trees of replicas in the Parisi mean-field theory of spin glasses. We also find that in the exponential model, the coalescence times along these trees grow like the logarithm of the population size. A phenomenological picture of the propagation of wave fronts that we introduced in a previous work, as well as our numerical data, suggest that these statistics remain valid for a larger class of models, while the coalescence times grow like the cube of the logarithm of the population size.Comment: 26 page

    A Compositional Deadlock Detector for Android Java

    Get PDF
    We develop a static deadlock analysis for commercial Android Java applications, of sizes in the tens of millions of LoC, under active development at Facebook. The analysis runs primarily at code-review time, on only the modified code and its dependents; we aim at reporting to developers in under 15 minutes. To detect deadlocks in this setting, we first model the real language as an abstract language with balanced re-entrant locks, nondeterministic iteration and branching, and non-recursive procedure calls. We show that the existence of a deadlock in this abstract language is equivalent to a certain condition over the sets of critical pairs of each program thread; these record, for all possible executions of the thread, which locks are currently held at the point when a fresh lock is acquired. Since the critical pairs of any program thread is finite and computable, the deadlock detection problem for our language is decidable, and in NP. We then leverage these results to develop an open-source implementation of our analysis adapted to deal with real Java code. The core of the implementation is an algorithm which computes critical pairs in a compositional, abstract interpretation style, running in quasi-exponential time. Our analyser is built in the INFER verification framework and has been in industrial deployment for over two years; it has seen over two hundred fixed deadlock reports with a report fix rate of ∼54%
    corecore