75 research outputs found

    How Much Do Benzodiazepines Matter for Electroconvulsive Therapy in Patients With Major Depression?

    Get PDF
    BACKGROUND: Electroconvulsive therapy (ECT) is one of the most effective treatments for major depressive disorder (MDD), especially in cases of treatment-resistant MDD. Because of their pharmacological profiles, benzodiazepines (BZDs) are suspected to decrease the efficacy of ECT. This study investigated the effect of BZDs on ECT-induced clinical outcomes and ECT course parameters in patients with MDD. METHOD: The impact of BZDs on severity of depression (Montgomery-Asberg Depression Rating Scale scores) and on ECT course parameters (seizure threshold, clinical and electroencephalographic seizure duration) was investigated in 70 patients with MDD who received an ECT course using dose-titration method (22 received concomitant BZDs). RESULTS: Lower remission rates (52.0%) and smaller decreases in Montgomery-Asberg Depression Rating Scale scores were observed in the non-BZD group than in the BZD group (81.2%, P = 0.02). There were no significant differences between the 2 groups regarding seizure duration and seizure threshold. LIMITATIONS: This was a retrospective study. Impact of BZDs on anxiety and cognition was not assessed. CONCLUSIONS: Benzodiazepines increased the clinical efficacy of ECT when delivered using dose-titration method and bitemporal stimulation. Further studied are needed to understand the interaction between BZDs and ECT on clinical outcomes

    Regulatory considerations for the clinical and research use of transcranial Direct Current Stimulation (tDCS): Review and recommendations from an expert panel

    Get PDF
    The field of transcranial electrical stimulation (tES) has experienced significant growth in the past 15 years. One of the tES techniques leading this increased interest is transcranial direct current stimulation (tDCS). Significant research efforts have been devoted to determining the clinical potential of tDCS in humans. Despite the promising results obtained with tDCS in basic and clinical neuroscience, further progress has been impeded by a lack of clarity on international regulatory pathways. Therefore, a group of research and clinician experts on tDCS were convened to review the research and clinical use of tDCS. This report reviews the regulatory status of tDCS and summarizes the results according to research, off-label, and compassionate use of tDCS in the following countries: Australia, Brazil, France, Germany, India, Iran, Italy, Portugal, South Korea, Taiwan, and the US. Research use, off label treatment, and compassionate use of tDCS are employed in most of the countries reviewed in this study. It is critical that a global or local effort is organized to pursue definite evidence to either approve and regulate or restrict the use of tDCS in clinical practice on the basis of adequate randomized controlled treatment trials.F.F. is supported by a grant from National Institutes of Health (NIH) (Grant number 1R44NS08063201). A.R.B. is supported by the following grants: 2013 NARSAD Young Investigator from the Brain & Behavior Research Foundation (Grant Number 20493), 2013 FAPESP Young Researcher from the São Paulo State Foundation (Grant Number 20911-5) and National Council for Scientific and Technological Development (CNPq, Grant Number 470904). J.B. is supported by the 2013 NARSAD Young Investigator from the Brain & Behavior Research Foundation (Grant Number 20988). H.E. is supported by grants from Tehran University of Medical Sciences. J.L. (SFRH/BPD/86027/2012) and S.C. (SFRH/BPD/86041/2012) are supported by grants from the Portuguese Foundation for Science and Technology (FCT). C.H.J. is supported by MOST (101-2811-H-008-014). G.V. is supported by as the Department of Science and Technology (Government of India) Research Grant (SR/CSI/158/2012) as well as Wellcome Trust / DBT India Alliance Senior Fellowship Research Award (500236/Z/11/Z). N.B. is supported by a F.A.R. grant from the University of Milano-Bicocca. M.B. is supported by NIH (NINDS, NIMH, NCI), Wallace H Coulter Foundation, Grove Foundation, DoD. W.C. is supported by National Council for Scientific and Technological Development-CNPq WC-301256/2013-6. The group is also grateful to the support from the Conselho Brasileiro de Neuromodulacao Clinica – Instituto Scala

    rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex

    Get PDF
    Background: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson’s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of noninvasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA). Methodology/Principal Findings: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [ 11 C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [ 11 C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [ 11 C]FLB 457 BP following right DLPFC rTMS. Conclusions/Significance: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [ 11 C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help t

    Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018)

    Get PDF
    A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance

    Effects of smoking status and MADRS retardation factor on response to low frequency repetitive transcranial magnetic stimulation for depression

    No full text
    International audienceAbstract Background Despite growing evidence supporting the clinical interest of repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant depression (TRD), little is known regarding the effects of clinical and sociodemographic factors on the clinical outcome in patients. Methods We retrospectively investigated the effects of clinical (using the 3-factor model of the Montgomery-Åsberg depression rating scale [MADRS] encompassing dysphoria, retardation and vegetative symptoms) and sociodemographic characteristics of participants on clinical outcome in a sample of 54 TRD patients receiving low frequency rTMS (1 Hz, 360 pulses) applied over the right dorsolateral prefrontal cortex combined with sham venlafaxine. Results Responders ( n = 29) displayed lower retardation baseline scores (13.6 ± 2.9) than non-responders (15.6 ± 2.9; n = 25; P = 0.02). We also observed a significant difference between the numbers of ex-smokers in responders and non-responders groups; all ex-smokers ( n = 8) were responders to rTMS ( P = 0.005). Conclusion Low MADRS retardation factor and ex-smoker status is highly prevalent in responders to low frequency rTMS. Further studies are needed to investigate the predictive value of these factors
    • 

    corecore