399 research outputs found

    An automatic tool flow for the combined implementation of multi-mode circuits

    Get PDF
    A multi-mode circuit implements the functionality of a limited number of circuits, called modes, of which at any given time only one needs to be realised. Using run-time reconfiguration of an FPGA, all the modes can be implemented on the same reconfigurable region, requiring only an area that can contain the biggest mode. Typically, conventional run-time reconfiguration techniques generate a configuration for every mode separately. To switch between modes the complete reconfigurable region is rewritten, which often leads to very long reconfiguration times. In this paper we present a novel, fully automated tool flow that exploits similarities between the modes and uses Dynamic Circuit Specialization to drastically reduce reconfiguration time. Experimental results show that the number of bits that is rewritten in the configuration memory reduces with a factor from 4.6X to 5.1X without significant performance penalties

    An all geometric discrete-time multiserver queueing system

    Get PDF
    In this work we look at a discrete-time multiserver queueing system where the number of available servers is distributed according to one of two geometrics. The arrival process is assumed to be general independent, the service times deterministically equal to one slot and the buffer capacity infinite. The queueing system resides in one of two states and the number of available servers follows a geometric distribution with parameter determined by the system state. At the end of a slot there is a fixed probability that the system evolves from one state to the other, with this probability depending on the current system state only, resulting in geometrically distributed sojourn times. We obtain the probability generating function (pgf) of the system content of an arbitrary slot in steady-state, as well as the pgf of the system content at the beginning of an arbitrary slot with a given state. Furthermore we obtain an approximation of the distribution of the delay a customer experiences in the proposed queueing system. This approximation is validated by simulation and the results are illustrated with a numerical example

    Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation

    Get PDF
    The Amazon and Congo basins are the two largest continuous blocks of tropical forest with a central role for global biogeochemical cycles and ecology. However, both biomes differ in structure and species richness and composition. Understanding future directions of the response of both biomes to environmental change is paramount. We used one elevational gradient on both continents to investigate functional and stoichiometric trait shifts of tropical forest in South America and Africa. We measured community-weighted functional canopy traits and canopy and topsoil delta N-15 signatures. We found that the functional forest composition response along both transects was parallel, with a shift towards more nitrogen-conservative species at higher elevations. Moreover, canopy and topsoil delta N-15 signals decreased with increasing altitude, suggesting a more conservative N cycle at higher elevations. This cross-continental study provides empirical indications that both South American and African tropical forest show a parallel response with altitude, driven by nitrogen availability along the elevational gradients, which in turn induces a shift in the functional forest composition. More standardized research, and more research on other elevational gradients is needed to confirm our observations

    Implications of movement for species distribution models - rethinking environmental data tools

    Get PDF
    Movement is considered an essential process in shaping the distributions of species. Nevertheless, most species distribution models (SDMs) still focus solely on environment-species relationships to predict the occurrence of species. Furthermore, the currently used indirect estimates of movement allow to assess habitat accessibility, but do not provide an accurate description of movement. Better proxies of movement are needed to assess the dispersal potential of individual species and to gain a more practical insight in the interconnectivity of communities. Telemetry techniques are rapidly evolving and highly capable to provide explicit descriptions of movement, but their usefulness for SDMs will mainly depend on the ability of these models to deal with hitherto unconsidered ecological processes. More specifically, the integration of movement is likely to affect the environmental data requirements as the connection between environmental and biological data is crucial to provide reliable results. Mobility implies the occupancy of a continuum of space, hence an adequate representation of both geographical and environmental space is paramount to study mobile species distributions. In this context, environmental models, remote sensing techniques and animal-borne environmental sensors are discussed as potential techniques to obtain suitable environmental data. In order to provide an in-depth review of the aforementioned methods, we have chosen to use the modelling of fish distributions as a case study. The high mobility of fish and the often highly variable nature of the aquatic environment generally complicate model development, making it an adequate subject for research. Furthermore, insight into the distribution of fish is of great interest for fish stock assessments and water management worldwide, underlining its practical relevance

    An approximate analysis of a bernoulli alternating service model

    No full text
    We consider a discrete-time queueing system with one server and two types of customers, say type-1 and type-2 customers. The server serves customers of either type alternately according to a Bernoulli pro- cess. The service times of the customers are deterministically equal to 1 time slot. For this queueing system, we derive a functional equation for the joint probability generating function of the number of type-1 and type-2 customers. The functional equation contains two unknown partial generating functions which complicates the analysis. We investigate the dominant singularity of these two unknown functions and propose an approximation for the coefficients of the Maclaurin series expansion of these functions. This approximation provides a fast method to compute approximations of various performance measures of interest

    Band inversion driven by electronic correlations at the (111) LaAlO3_3/SrTiO3_3 interface

    Get PDF
    Quantum confinement at complex oxide interfaces establishes an intricate hierarchy of the strongly correlated dd-orbitals which is widely recognized as a source of emergent physics. The most prominent example is the (001) LaAlO3_3/SrTiO3_3(LAO/STO) interface, which features a dome-shaped phase diagram of superconducting critical temperature and spin-orbit coupling (SOC) as a function of electrostatic doping, arising from a selective occupancy of t2gt_{2g} orbitals of different character. Here we study (111)-oriented LAO/STO interfaces - where the three t2gt_{2g} orbitals contribute equally to the sub-band states caused by confinement - and investigate the impact of this unique feature on electronic transport. We show that transport occurs through two sets of electron-like sub-bands, and the carrier density of one of the sets shows a non-monotonic dependence on the sample conductance. Using tight-binding modeling, we demonstrate that this behavior stems from a band inversion driven by on-site Coulomb interactions. The balanced contribution of all t2gt_{2g} orbitals to electronic transport is shown to result in strong SOC with reduced electrostatic modulation.Comment: 5 pages, 4 figures, (+ supplemental material

    Transform-domain analysis of packet delay in network nodes with QoS-aware scheduling

    Get PDF
    In order to differentiate the perceived QoS between traffic classes in heterogeneous packet networks, equipment discriminates incoming packets based on their class, particularly in the way queued packets are scheduled for further transmission. We review a common stochastic modelling framework in which scheduling mechanisms can be evaluated, especially with regard to the resulting per-class delay distribution. For this, a discrete-time single-server queue is considered with two classes of packet arrivals, either delay-sensitive (1) or delay-tolerant (2). The steady-state analysis relies on the use of well-chosen supplementary variables and is mainly done in the transform domain. Secondly, we propose and analyse a new type of scheduling mechanism that allows precise control over the amount of delay differentiation between the classes. The idea is to introduce N reserved places in the queue, intended for future arrivals of class 1

    The governance of formal university–industry interactions: understanding the rationales for alternative models

    Get PDF
    This article develops a conceptual framework to explain the economic rationale underpinning the choice of different modes of governance of formal university–industry interactions: personal contractual interactions, where the contract regulating the collaboration involves a firm and an individual academic researcher, and institutional interactions, where the relationship between the firm and the academic is mediated by the university. Although institutional interactions, for numerous reasons, have become more important, both governance modes are currently being implemented. We would argue that they have some important specificities that need to be understood if university–industry knowledge transfer is to be managed effectively and efficiently

    Performance analysis of priority queueing systems in discrete time

    Get PDF
    The integration of different types of traffic in packet-based networks spawns the need for traffic differentiation. In this tutorial paper, we present some analytical techniques to tackle discrete-time queueing systems with priority scheduling. We investigate both preemptive (resume and repeat) and non-preemptive priority scheduling disciplines. Two classes of traffic are considered, high-priority and low-priority traffic, which both generate variable-length packets. A probability generating functions approach leads to performance measures such as moments of system contents and packet delays of both classes
    • 

    corecore