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Abstract. In this work we look at a discrete-time multiserver queueing
system where the number of available servers is distributed according
to one of two geometrics. The arrival process is assumed to be general
independent, the service times deterministically equal to one slot and the
buffer capacity infinite. The queueing system resides in one of two states
and the number of available servers follows a geometric distribution with
parameter determined by the system state. At the end of a slot there is a
fixed probability that the system evolves from one state to the other, with
this probability depending on the current system state only, resulting in
geometrically distributed sojourn times.
We obtain the probability generating function (pgf) of the system con-
tent of an arbitrary slot in steady-state, as well as the pgf of the system
content at the beginning of an arbitrary slot with a given state. Fur-
thermore we obtain an approximation of the distribution of the delay
a customer experiences in the proposed queueing system. This approxi-
mation is validated by simulation and the results are illustrated with a
numerical example.

Keywords: Queueing theory · Discrete-time · Multiserver · Geometric
· System content · Delay.

1 Introduction

In many queueing situations the number of servers is not constant. Moreover,
the expected number of available servers can vary over time. In this respect,
this paper focusses on a discrete-time queueing model with two system states.
The number of available servers in a slot follows a geometric distribution with
a parameter that is determined by the system state. The arrival process is as-
sumed to be general and independent, service times are deterministically equal
to one slot and the buffer capacity is infinite. State changes are assumed to occur
according to a first-order Markov process.

Discrete-time multiserver queueing systems have received considerable at-
tention in the past in several settings [5,6,7,8,13]. Specifically, [13] handles a
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multiserver queueing system with priorities. Multiserver queueing systems with
batch arrivals are considered in [5,6] for geometric, respectively deterministic
service times, while [7,8] deal with multiserver systems with general indepen-
dent arrivals and geometric and constant service times. These papers all have in
common that the number of servers present in the system is constant.

Also queues with a varying number of servers have been studied in literature.
In the most simple case, the number of available servers changes independently
from slot to slot [1,9]. In [9] either all m servers are available or none, while
in [1] the number of available servers can take any value between 0 and m. In
[4] correlation over time is introduced on the number of available servers by
combining a permanently available server with an extra server with generally
distributed off-times and geometrically distributed on-times. The analysis of [4],
however, is limited to the system content. In the current paper, we focus on
a discrete-time multiserver queueing model that is general enough to include
variability and time correlation on the number of available servers, but yet simple
enough to lend itself to a full queueing analysis of not only the system content
but also the delay, and to have a limited number of easily interpretable model
parameters. Specifically, our model considers two possible system states, each
with their own geometric distributions for state sojourn time and for the number
of available servers during a slot.

The main contribution of the current paper is the delay analysis for the
considered queueing model. Multiserver queueing systems are notoriously hard
when considering the delay analysis, especially when dealing with a varying
number of available servers. Some earlier results can be found in [12] where all
m servers are subject to independent interruptions and no correlation is present
on the server availability.

The study of this model is motivated by the many applications of queueing
theory where the number of servers is not constant over time and a certain corre-
lation exists in the number of available servers. Examples include the modelling
of the airport checkin process [14] or supply chains in production facilities [11].

The outline of the paper is as follows. In the next section we provide a detailed
mathematical description of the queueing model under study. In Section 3 we
obtain the steady-state distribution of the system content at the beginning of
an arbitrary slot and at the beginning of a slot with a given state. In Section
4 we look at the delay analysis for this queueing system. Section 5 provides a
numerical example and Section 6 concludes the paper.

2 Mathematical Model

In this paper we study a discrete-time queueing system; the time horizon is
divided into slots of equal length. The arrival process is general and independent
and is described by

c(n) , Prob[n customers arrive during a slot] , n ≥ 0 ; (1)
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C(z) ,
∞∑
n=0

c(n)zn ; (2)

λ ,
∞∑
n=0

nc(n) = C ′(1) . (3)

If we denote by ck the number of arrivals in the kth slot, then the series {ck} is
a set of independent and identically distributed (i.i.d.) stochastic variables. The
service time of every customer equals 1 slot.

The system resides in state-A or state-B and the number of available servers
during a slot follows a geometrical distribution, with parameter determined by
the system state during that slot. Specifically, we have that

Prob[n servers available during A-slot] = (1− β1)βn1 , n ≥ 0 ; (4)
Prob[n servers available during B-slot] = (1− β2)βn2 , n ≥ 0 , (5)

with 0 < β1,β2 < 1. The expected number of available servers during an A-slot
is β1

1−β1
and during a B-slot β2

1−β2
. We easily obtain

Prob[more than n servers available during A-slot] = βn+1
1 , n ≥ 0 ; (6)

Prob[more than n servers available during B-slot] = βn+1
2 , n ≥ 0 . (7)

If we denote by sA,k and sB,k the number of available servers in the kth A-slot
and the kth B-slot respectively, then we have that the series {sA,k} and {sB,k}
are two different sets of i.i.d. stochastic variables.

State changes can only occur at the end of a slot, and the probability of a
state change occurring is fixed and depends solely on the current state:

Prob[A-slot is followed by B-slot] , 1− α1 ; (8)

Prob[B-slot is followed by A-slot] , 1− α2 . (9)

with 0 < α1,α2 < 1. Let us introduce σ to denote the probability that an
arbitrary slot is an A-slot, then standard probability theory leads to:

σ =
1− α2

2− α1 − α2
. (10)

This paper handles the steady-state situation of the queueing system as described
and it is therefore assumed that the stability condition is fulfilled. For the queue
to be stable it is required that the average number of arrivals during a slot is
strictly smaller than the average number of customers that can be served. This
can be expressed as:
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λ <
σβ1

1− β1
+

(1− σ)β2
1− β2

=
(1− α1)(1− β1)β2 + (1− α2)(1− β2)β1

(1− β1)(1− β2)(2− α1 − α2)
. (11)

We assume a First In First Out (FIFO) policy. The delay of a customer is
defined as its total system time, excluding the remainder of the slot in which
the customer arrives. The delay is thus always an integer number of slots and
includes the service time.

The setup as described is also referred to as a Late Arrival System with
Delayed Access (LAS-DA).

A schematic overview of the system can be found in Figure 1.
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A B System state

Queue

1− α1

1− α2

α1 α2

Server 1

Server 2
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Server 1

Server 2
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Prob[n servers]
= (1− β1)β

n
1

Prob[n servers]
= (1− β2)β

n
2

Departures

Fig. 1. Illustration of the considered queueing system
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3 Analysis of System Content

In this section we first analyze the system content. Let us look at an arbitrary A-
slot SA and an arbitrary B-slot SB in steady state. We denote the system content
at the beginning of these slots as uA and uB respectively, while we denote the
system content at the end of these arbitrary slots as u+A and u+B respectively.
These system contents are related to each other through the following system
equations:

u+A = max(uA − sA, 0) + cA ; (12)

u+B = max(uB − sB, 0) + cB , (13)

with sA and sB the number of available servers in SA and SB, and with cA
and cB the number of customers arriving in these respective slots. Due to the
Markovian transitions between the system states we get that in steady state
there is a probability α1 that the slot before SA is an A-slot (and a probability
(1 − α1) that the slot before SA is a B-slot). If we introduce UA(z) and UB(z)
as the probability generating functions (pgfs) of uA and uB respectively, we can
write:

UA(z) =α1E
[
zu

+
A

]
+ (1− α1)E

[
zu

+
B

]
=α1C(z)

∞∑
k=0

Prob[uA = k] Prob[sA > k]

+ α1C(z)

∞∑
k=0

k∑
l=0

Prob[uA = k] Prob[sA = l] zk−l

+ (1− α1)C(z)

∞∑
k=0

Prob[uB = k] Prob[sB > k]

+ (1− α1)C(z)

∞∑
k=0

k∑
l=0

Prob[uB = k] Prob[sB = l] zk−l

=α1C(z)β1UA(β1) + (1− α1)C(z)β2UB(β2)

+ α1C(z)

∞∑
k=0

Prob[uA = k] zk(1− β1)
1−

(
β1

z

)k+1

1− β1

z

+ (1− α1)C(z)

∞∑
k=0

Prob[uB = k] zk(1− β2)
1−

(
β2

z

)k+1

1− β2

z

=α1C(z)UA(β1)β1
z − 1

z − β1
+ (1− α1)C(z)UB(β2)β2

z − 1

z − β2
+ α1C(z)UA(z)

(1− β1)z
z − β1

+ (1− α1)C(z)UB(z)
(1− β2)z
z − β2

. (14)



6 F. Verdonck et al.

A similar derivation can be made for the pgf UB(z) of uB leading to

UB(z) =α2C(z)UB(β2)β2
z − 1

z − β2
+ (1− α2)C(z)UA(β1)β1

z − 1

z − β1
+ α2C(z)UB(z)

(1− β2)z
z − β2

+ (1− α2)C(z)UA(z)
(1− β1)z
z − β1

. (15)

The set of linear equations (14) and (15) can be solved for UA(z) and UB(z)
which leads to the following explicit expressions:

UA(z) =

(z − 1)C(z)

{
β2(1− α1)(z − β1)UB(β2) + β1α1(z − β2)UA(β1)

+ β1(1− β2)(1− α1 − α2)zC(z)UA(β1)

}
(z − β1)(z − β2)− (1− β1)(1− β2)(1− α1 − α2)z

2C(z)
2

− [α1(1− β1)(z − β2) + α2(1− β2)(z − β1)] zC(z)

;

(16)

UB(z) =

(z − 1)C(z)

{
β1(1− α2)(z − β2)UA(β1) + β2α2(z − β1)UB(β2)

+ β2(1− β1)(1− α1 − α2)zC(z)UB(β2)

}
(z − β1)(z − β2)− (1− β1)(1− β2)(1− α1 − α2)z

2C(z)
2

− [α1(1− β1)(z − β2) + α2(1− β2)(z − β1)] zC(z)

,

(17)

in which two unknown constants appear, UA(β1) and UB(β2). These unknowns
cannot be straightforwardly determined since the substitutions z = β1 in (16)
and z = β2 in (17) lead to two identities. However, we can determine them by
relying on the properties of pgfs, namely that they are analytical within the
complex unit disk and normalized.

Let us first take a look at the denominator of UA(z) and UB(z). It can easily
be seen that the first part, (z−β1)(z−β2), has exactly 2 zeros within the complex
unit disk. By application of Rouché’s theorem we can conclude that the whole
denominator also has 2 zeros within the complex unit disk (for more information
on Rouché’s theorem, see for example [10]). It can easily be verified that z = 1
is one of these zeros. Let us call the other zero z1. As UA(z) and UB(z) are
pgfs, they cannot have singularities within the complex unit disk and thus their
numerators must also vanish at z = 1 and z = z1. This is obviously the case for
z = 1, irrespectively of the unknown constants. Expressing that the numerator
must also vanish for z = z1 leads to one relation linking the 2 unknowns. A
second relation can be obtained by expressing the normality condition of pgfs:

lim
z→1

UA(z) = 1 . (18)

After applying L’Hôpital’s rule and using (10), we obtain

σβ1(1− β2)UA(β1) + (1− σ)(1− β1)β2UB(β2)

(1− β1)(1− β2)λ+ σβ1(1− β2) + (1− σ)(1− β1)β2
= 1 . (19)
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We can thus determine the 2 unknowns in the expressions for UA(z) and UB(z)
and obtain the pgfs of the system contents at the beginning of an arbitrary A-
slot and B-slot. The system content u at the beginning of an arbitrary slot is
then determined by its pgf U(z), with

U(z) = σUA(z) + (1− σ)UB(z) . (20)

From the pgf of the system content we can easily obtain the (central) moments
of its distribution, leading to the mean and variation of the system content. Also
higher order moments can be calculated.

4 Delay Analysis

Now that we have expressions for the pgfs of the system contents at the beginning
of an arbitrary A-slot and arbitrary B-slot, we are in a position to study the
delay that a customer experiences in the queueing system. First, we condition
the delay of a customer on the state of its arrival slot and on the number of
customers waiting in the queue in front of it, where we exclude the customers
that are receiving service at the moment of arrival. Then, we combine this with
the results of the previous section to obtain an expression for the pgf of the
delay of an arbitrary customer. Finally, we use the obtained pgf to derive an
approximation for the tail probabilities of the delay.

4.1 Delay of a Customer With k Customers Ahead

We look at an arbitrary customer PA, arriving during an arbitrary A-slot. We
introduce the stochastic variable dA,k for its delay, given that there are k cus-
tomers in front of PA in the queue at the moment of its arrival (thus excluding
the customers receiving service). The corresponding pgf is DA,k(z). Analogously
we study the arbitrary customer PB, arriving during an arbitrary B-slot. Given
that there are k customers in the queue in front of PB, its delay is denoted by the
stochastic variable dB,k, with corresponding pgf DB,k(z). By looking at the sys-
tem state and the number of available servers during the slot after the considered
customer’s arrival slot, we can obtain the following relations (for k ≥ 0):

DA,k(z) =(1− α1)zProb[sB > k] + (1− α1)z

k∑
l=0

DB,k−l(z) Prob[sB = l]

+ α1zProb[sA > k] + α1z

k∑
l=0

DA,k−l(z) Prob[sA = l] ; (21)

DB,k(z) =(1− α2)zProb[sA > k] + (1− α2)z

k∑
l=0

DA,k−l(z) Prob[sA = l]
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+ α2zProb[sB > k] + α2z

k∑
l=0

DB,k−l(z) Prob[sB = l] , (22)

with sA and sB the numbers of available servers in an A-slot or B-slot. Let us
now introduce some auxiliary functions:

DA(x, z) ,
∞∑
k=0

DA,k(z)x
k ; (23)

DB(x, z) ,
∞∑
k=0

DB,k(z)x
k . (24)

Using (21) and (22) to work out these definitions we get

DA(x, z) =(1− α1)z

∞∑
k=0

βk+1
2 xk + (1− α1)z

∞∑
k=0

xk
k∑
l=0

DB,k−l(z) (1− β2)βl2

+ α1z

∞∑
k=0

βk+1
1 xk + α1z

∞∑
k=0

xk
k∑
l=0

DA,k−l(z) (1− β1)βl1

=
(1− α1)β2z

1− β2x
+

(1− α1)(1− β2)z
1− β2x

DB(x, z)

+
α1β1z

1− β1x
+
α1(1− β1)z
1− β1x

DA(x, z) , (25)

and in a similar way

DB(x, z) =
(1− α2)β1z

1− β1x
+

(1− α2)(1− β1)z
1− β1x

DA(x, z)

+
α2β2z

1− β2x
+
α2(1− β2)z
1− β2x

DB(x, z) . (26)

The set of linear equations (25) and (26) can be solved forDA(x, z) andDB(x, z).
This leads to the following explicit expressions:

DA(x, z) =
fA(x, z)

g(x, z)
; (27)

DB(x, z) =
fB(x, z)

g(x, z)
, (28)

with

fA(x, z) ,β1β2zx− [(1− α1)β2 + (1− β2)(1− α1 − α2)β1z − α1β1] z ; (29)
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fB(x, z) ,β1β2zx− [(1− α2)β1 + (1− β1)(1− α1 − α2)β2z − α2β2] z , (30)

and

g(x, z) ,− 1 + [α1(1− β1) + α2(1− β2)] z + (1− β1)(1− β2)(1− α1 − α2)z
2

+ [(1− α1z)β2 + (1− α2z)β1 + (α1 + α2)β1β2z]x− β1β2x2 . (31)
(32)

We can consider DA(x, z) and DB(x, z) as rational functions in x with numerator
of degree 1 and denominator of degree 2. A partial fraction expansion can be
made based on the poles in x which we denote as x1 and x2 and assume to be
distinct. We can then rewrite (27) and (28) as

DA(x, z) =

2∑
i=1

fA(xi, z)

gx(xi, z) (x− xi)
; (33)

DB(x, z) =

2∑
i=1

fB(xi, z)

gx(xi, z) (x− xi)
, (34)

with

gx(x, z) ,
∂

∂x
g(x, z) . (35)

We obtain an expression forDA,k(z) by evaluating the kth derivative with respect
to x of DA(x, z) at x = 0:

DA,k(z) =
1

k!

∂k

∂xk
DA(x, z)

∣∣∣∣
x=0

=

2∑
i=1

−fA(xi, z)
gx(xi, z)x

k+1
i

. (36)

In a similar way we find the following expression for DB,k(z):

DB,k(z) =

2∑
i=1

−fB(xi, z)
gx(xi, z)x

k+1
i

. (37)

4.2 Delay of an Arbitrary Customer

We consider the arbitrary packet PA, arriving in the system during the A-slot
SA and we denote the number of customers in the queue at its moment of arrival
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by the stochastic variable tA, with corresponding pgf TA(z). Upon arrival, the
customers waiting in the queue are those that were present in the queueing
system at the beginning of SA, minus those that receive service during SA and
plus those that arrived during SA, but before the arrival of PA. The pgf F (z) of
this last number of arrivals is well known in the literature, see e.g. [2]:

F (z) =
C(z)− 1

λ(z − 1)
. (38)

We get for TA(z):

TA(z) =F (z)

{ ∞∑
k=0

Prob[uA = k] Prob[sA > k]

+

∞∑
k=0

Prob[uA = k]

k∑
l=0

Prob[sA = l] zk−l
}

=F (z)

{ ∞∑
k=0

Prob[uA = k]βk+1
1

+

∞∑
k=0

Prob[uA = k] zk
k∑
l=0

(1− β1)
(
β1
z

)l}

=F (z)

{
β1UA(β1) + (1− β1)

∞∑
k=0

Prob[uA = k]
zk+1 − βk+1

1

z − β1

}

=F (z)
(1− β1)zUA(z) + (z − 1)β1UA(β1)

z − β1
. (39)

In a similar manner we can define tB as the queue content seen by an arbitrary
customer PB, arriving during a B-slot. The corresponding pgf TB(z) is given by

TB(z) = F (z)
(1− β2)zUB(z) + (z − 1)β2UB(β2)

z − β2
. (40)

The arrival slot of an arbitrary packet P is an A-slot with probability σ and
a B-slot with probability (1 − σ). We can therefore express the pgf of its delay
W (z) as

W (z) = σ

∞∑
k=0

Prob[tA = k]DA,k(z) + (1− σ)
∞∑
k=0

Prob[tB = k]DB,k(z) . (41)

Substitution of (36) and (37) into the above expression yields

W (z) = σ

2∑
i=1

−fA(xi, z)
gx(xi, z)xi

TA

(
1

xi

)
+ (1− σ)

2∑
i=1

−fB(xi, z)
gx(xi, z)xi

TB

(
1

xi

)
. (42)
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The above equation is fully determined, the xi are functions of z, but can be
easily obtained as they are the roots of a quadratic equation. However, it is not
easy to invert this pgf. In the following subsection we use these results to obtain
a tail approximation of the delay of an arbitrary customer.

4.3 Tail Approximation

We can use the technique of the dominant singularity, see e.g. [3,15], to obtain
the tail distribution of the delay of an arbitrary customer. For sufficiently large
k we have that

Prob[delay = k slots] ≈ −w0

z0
z−k0 ; (43)

Prob[delay > k slots] ≈ − w0

z0(z0 − 1)
z−k0 , (44)

with z0 the pole of W (z) with the smallest modulus and with

w0 = lim
z→z0

[W (z) (z − z0)] . (45)

Note that z0 is real-valued and larger than 1 and that w0 is real-valued and
negative. As the xi are non-zero and distinct we have that z0 can only be found
as a pole of TA

(
1
xi

)
, or equivalently as a pole of TB

(
1
xi

)
. In view of (16), (38)

and (39), z0 must be found as a pole of C
(

1
xi

)
or as a zero of

f(z) =(1− β1xi)(1− β2xi)− (1− β1)(1− β2)(1− α1 − α2)C

(
1

xi

)2

− [α1(1− β1)(1− β2xi) + α2(1− β2)(1− β1xi)]C
(

1

xi

)
. (46)

5 Numerical Examples

In this section we illustrate the method developed in this paper with some nu-
merical examples. For the arrivals we take a Poisson process:

C(z) = eλ(z−1) . (47)

In an initial example we take the following values for the parameters: α1 = 0.6,
α2 = 0.7, β1 = 0.4 and β2 = 0.6. The average number of servers available in an
arbitrary slot equals 1.14 and thus the system is stable if λ < 1.14. In Figure
2 we plot the average system content in function of the arrival intensity λ for
this system based on the method developed in this paper, as well as based on
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simulation. It must be noted that for the simulation the required computation
time is much larger than the time required to compute the unknowns UA(β1)
and UB(β2), which involves finding the root of a non-polynomial function within
the complex unit disk and solving a set of 2 linear equations. The system content
shows an expected vertical asymptote for λ→ 1.14. The simulation validates the
results obtained by the method of this paper.

0 0.25 0.5 0.75 1

10

20

30

40

50

λ

E
[u
]

Formula
Simulation

Fig. 2. Average system content in function of λ, for α1 = 0.6, α2 = 0.7, β1 = 0.4 and
β2 = 0.6.

In Figure 3 we look at the delay characteristics for this example. We set λ = 1
and we plot the probability that the delay of a customer equals k slots for
increasing k. The mean system content in this situation equals 12.88 customers.
We see that already for small k the obtained tail approximation is very close to
the simulation results. For large k the simulation would need to run for a very
long time in order to get reliable results, while our formula immediately gives
an excellent approximation for all k.

In a second example we introduce a larger difference between the two states:
α1 = 0.61, α2 = 0.3, β1 = 0.1 and β2 = 0.75. The parameters have been chosen
in such a way that the expected number of servers available during an arbitrary
slot is the same as in the previous example. In the A-state there is now a high
probability that no servers are available, while in state-B we expect on average
3 available servers. However, the system does not reside for long periods in the
B-state as α2 is small. In Figure 4 the system content is plotted in function of the
arrival intensity λ. Note that the vertical axis now goes until 100. The curve of
the system content shows the same shape and has the same vertical asymptote
for λ → 1.14, but for a given λ the system content is higher as compared to
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Fig. 3. Delay characteristics for λ = 1, α1 = 0.6, α2 = 0.7, β1 = 0.4 and β2 = 0.6.

the first situation. This is expected in view of the increased irregularity in the
service process for the second example. The difference is also larger for higher λ.

We now also look at the delay characteristics for this situation. We choose
λ = 0.9157 in order to have the same mean system content of 12.88 as in the
previous example. The delay characteristics are plotted in Figure 5. The slope
of the delay curve in this situation is less steep than before, the characteristic
singularity being closer to 1. In particular we now have z0 = 1.0769, while for
Figure 3 we had z0 = 1.0843. This means that even though the mean system
content remains the same, the delay characteristics are different. For large values
of k, there is a higher probability that the delay of a customer exceeds k as
compared to the situation of Figure 3. This is again in accordance with the
increased irregularity in the service process.

6 Conclusion

In this paper we have studied an all geometric discrete-time multiserver queueing
system. The system resides in one of two different states, and does so for a
geometrically distributed number of slots, with a different parameter for each
state. The number of servers available during a slot also follows a geometric
distribution, with a parameter depending on the system state. The model can
be used in many applications of queueing theory where the expected number of
available servers fluctuates over time and is fairly simple in terms of the number
of parameters that needs to be matched. We have obtained expressions for the
probability generating functions of the system content at the beginning of an
arbitrary slot and at the beginning of an arbitrary slot with a given state.

Furthermore we have obtained an approximation for the tail probabilities of
the delay that an arbitrary customer experiences in the queueing system. This
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Fig. 4. Average system content in function of λ, for α1 = 0.61, α2 = 0.3, β1 = 0.1 and
β2 = 0.75.

approximation is based on the theory of the dominant singularity. Numerical
examples have shown that our tail approximation is also accurate for smaller
delay values. The numerical examples have further illustrated that more variation
in the number of available servers leads to higher system contents. Moreover, for
a given system content, there is a higher probability that a customer experiences
larger delays when more variability is present in the system.
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