15 research outputs found

    X-ray imaging with gaseous detectors using the VMM3a and the SRS

    Get PDF
    The integration of the VMM3a Application-Specific Integrated Circuit (ASIC) into RD51's Scalable Readout System (SRS) provides a versatile tool for the readout of Micro-Pattern Gaseous Detectors (MPGDs). With its self-triggered high-rate readout, its analogue part that allows to get information on the deposited energy in the detector, and its so-called neighbouring-logic that allows to recover information on the charge distribution, this new system has features of particular interest for digital X-ray imaging. In the present article, we want to emphasise the capabilities of VMM3a/SRS by presenting results of X-ray imaging studies. We will highlight the advantages on the energy and the spatial resolution provided by the neighbouring-logic. In the first part, we focus on spatial resolution studies. We show how segmented readout structures introduce a repeating pattern in the distribution of the reconstructed positions (using the centre-of-gravity method) and how this behaviour can be mitigated with the neighbouring-logic. As part of these studies, we explore as well an alternative position reconstruction algorithm. In the second part of the article, we present the energy resolution studies.Peer reviewe

    Timing performance of a Micro-Channel-Plate Photomultiplier Tube

    Get PDF
    The spatial dependence of the timing performance of the R3809U-50 Micro-Channel-Plate PMT (MCP-PMT) by Hamamatsu was studied in high energy muon beams. Particle position information is provided by a GEM tracker telescope, while timing is measured relative to a second MCP-PMT, identical in construction. In the inner part of the circular active area (radius r5.5 mm) the time resolution of the two MCP-PMTs combined is better than 10 ps. The signal amplitude decreases in the outer region due to less light reaching the photocathode, resulting in a worse time resolution. The observed radial dependence is in quantitative agreement with a dedicated simulation. With this characterization, the suitability of MCP-PMTs as t0 reference detectors has been validated.Peer reviewe

    Precise charged particle timing with the PICOSEC detector

    Get PDF
    The experimental requirements in near future accelerators (e.g. High Luminosity-LHC) has stimulated intense interestin development of detectors with high precision timing capabilities. With this as a goal, a new detection concept called PICOSEC,which is based to a “two-stage” MicroMegas detector coupled to a Cherenkov radiator equipped with a photocathode has beendeveloped. Results obtained with this new detector yield a time resolution of 24 ps for 150 GeV muons and 76 ps for single pho-toelectrons. In this paper we will report on the performance of the PICOSEC in test beams, as well as simulation studies andmodelling of its timing characteristicsPeer reviewe

    Precise timing with the PICOSEC-Micromegas detector

    Get PDF
    This work presents the concept of the PICOSEC-Micromegas de-tector to achieve a time resolution below 30 ps. PICOSEC consists of a two-stageMicromegas detector coupled to a Cherenkov radiator and equipped with a photo-cathode. The results from single-channel prototypes as well as the understanding ofthe detector in terms of detailed simulations and preliminary results from a multi-channel prototype are presented.Peer reviewe

    Charged particle timing at sub-25 picosecond precision : The PICOSEC detection concept

    Get PDF
    The PICOSEC detection concept consists in a “two-stage” Micromegas detector coupled to a Cherenkov radiator and equipped with a photocathode. A proof of concept has already been tested: a single-photoelectron response of 76 ps has been measured with a femtosecond UV laser at CEA/IRAMIS, while a time resolution of 24 ps with a mean yield of 10.4 photoelectrons has been measured for 150 GeV muons at the CERN SPS H4 secondary line. This work will present the main results of this prototype and the performance of the different detector configurations tested in 2016-18 beam campaigns: readouts (bulk, resistive, multipad) and photocathodes (metallic+CsI, pure metallic, diamond). Finally, the prospects for building a demonstrator based on PICOSEC detection concept for future experiments will be discussed. In particular, the scaling strategies for a large area coverage with a multichannel readout plane, the R&D on solid converters for building a robust photocathode and the different resistive configurations for a robust readout.Peer reviewe

    Progress on the PICOSEC-Micromegas Detector Development : Towards a precise timing, radiation hard, large-scale particle detector with segmented readout

    Get PDF
    This contribution describes the PICOSEC-Micromegas detector which achieves a time resolution below 25 ps. In this device the passage of a charged particle produces Cherenkov photons in a radiator, which then generate electrons in a photocathode and these photoelectrons enter a two-stage Micromegas with a reduced drift region and a typical anode region. The results from single-channel prototypes (demonstrating a time resolution of 24 ps for minimum ionizing particles, and 76 ps for single photoelectrons), the understanding of the detector in terms of detailed simulations and a phenomenological model, the issues of robustness and how they are tackled, and preliminary results from a multi-channel prototype are presented (demonstrating that a timing resolution similar to that of the single-channel device is feasible for all points across the area covered by a multi-channel device).Peer reviewe

    Gate-Tunable Electron Transport Phenomena in Al–Ge⟨111⟩–Al Nanowire Heterostructures

    No full text
    Electrostatically tunable negative differential resistance (NDR) is demonstrated in monolithic metal–semiconductor–metal (Al–Ge–Al) nanowire (NW) heterostructures integrated in back-gated field-effect transistors (FETs). Unambiguous signatures of NDR even at room temperature are attributed to intervalley electron transfer. At yet higher electric fields, impact ionization leads to an exponential increase of the current in the ⟨111⟩ oriented Ge NW segments. Modulation of the transfer rates, manifested as a large tunability of the peak-to-valley ratio (PVR) and the onset of impact ionization is achieved by the combined influences of electrostatic gating, geometric confinement, and heterojunction shape on hot electron transfer and by electron–electron scattering rates that can be altered by varying the charge carrier concentration in the NW FETs

    Combined Optical and Electronic Readout For Event Reconstruction in a GEM-based TPC

    Get PDF
    Optically read out time projection chambers (TPCs) based on gaseous electron multipliers (GEMs) combine 3-D event reconstruction capabilities with high spatial resolution and charge amplification factors. The approach of reconstructing particle tracks from 2-D projections obtained with imaging sensors and depth information from photomultiplier tubes is limited to specific cases such as straight particle trajectories. A combination of optical and electronic readout realized by a semitransparent anode placed between a triple-GEM stack and a camera in an optically read out TPC has been realized and used to reconstruct more complex particle tracks. High spatial resolution 2-D projections combined with a low number of charge readout channels enable accurate 3-D event topology reconstruction. Straight alpha tracks as well as more complex cosmic events have been reconstructed with the presented readout concept. Relative depth information from electronically read out charge signals has been combined with drift time information between primary and secondary scintillation pulses to absolute alpha track reconstructions.Peer reviewe

    Optical readout studies of the Thick-COBRA gaseous detector

    Get PDF
    The performance of a Thick-COBRA (THCOBRA) gaseous detector is studied using an optical readout technique. The operation principle of this device is described, highlighting its operation in a gas mixture of Ar/CF4(80/20 %) for visible scintillation light emission. The contributions to the total gain from the holes and the anode strips as a function of the applied bias voltage were visualized. The preservation of spatial information from the initial ionizations was demonstrated by analyzing the light emission from 5.9 keV X-rays of an 55Fe source. The observed non-uniformity of the scintillation light from the holes supports the claim of a space localization accuracy better than the pitch of the holes. The acquired images were used to identify weak points and sources of instabilities in view of the development of new optimized structures.Peer reviewe

    In Situ Transmission Electron Microscopy Analysis of Aluminum–Germanium Nanowire Solid-State Reaction

    No full text
    International audienceTo fully exploit the potential of semiconduct-ing nanowires for devices, high quality electrical contacts are of paramount importance. This work presents a detailed in situ transmission electron microscopy (TEM) study of a very promising type of NW contact where aluminum metal enters the germanium semiconducting nanowire to form an extremely abrupt and clean axial metal−semiconductor interface. We study this solid-state reaction between the aluminum contact and germanium nanowire in situ in the TEM using two different local heating methods. Following the reaction interface of the intrusion of Al in the Ge nanowire shows that at temperatures between 250 and 330°C the position of the interface as a function of time is well fitted by a square root function, indicating that the reaction rate is limited by a diffusion process. Combining both chemical analysis and electron diffraction we find that the Ge of the nanowire core is completely exchanged by the entering Al atoms that form a monocrystalline nanowire with the usual face-centered cubic structure of Al, where the nanowire dimensions are inherited from the initial Ge nanowire. Model-based chemical mapping by energy dispersive X-ray spectroscopy (EDX) characterization reveals the three-dimensional chemical cross-section of the transformed nanowire with an Al core, surrounded by a thin pure Ge (∼2 nm), Al 2 O 3 (∼3 nm), and Ge containing Al 2 O 3 (∼1 nm) layer, respectively. The presence of Ge containing shells around the Al core indicates that Ge diffuses back into the metal reservoir by surface diffusion, which was confirmed by the detection of Ge atoms in the Al metal line by EDX analysis. Fitting a diffusion equation to the kinetic data allows the extraction of the diffusion coefficient at two different temperatures, which shows a good agreement with diffusion coefficients from literature for self-diffusion of Al
    corecore