37 research outputs found

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    A novel soybean hairy root system for gene functional validation.

    Get PDF
    Agrobacterium rhizogenes-mediated transformation has long been explored as a versatile and reliable method for gene function validation in many plant species, including soybean (Glycine max). Likewise, detached-leaf assays have been widely used for rapid and mass screening of soybean genotypes for disease resistance. The present study combines these two methods to establish an efficient and practical system to generate transgenic soybean hairy roots from detached leaves and their subsequent culture under ex vitro conditions. We demonstrated that hairy roots derived from leaves of two (tropical and temperate) soybean cultivars could be successfully infected by economically important species of root-knot nematodes (Meloidogyne incognita and M. javanica). The established detached-leaf method was further explored for functional validation of two candidate genes encoding for cell wall modifying proteins (CWMPs) to promote resistance against M. incognita through distinct biotechnological strategies: the overexpression of a wild Arachis α-expansin transgene (AdEXPA24) and the dsRNA-mediated silencing of an endogenous soybean polygalacturonase gene (GmPG). AdEXPA24 overexpression in hairy roots of RKN-susceptible soybean cultivar significantly reduced nematode infection by approximately 47%, whereas GmPG downregulation caused an average decrease of 37%. This novel system of hairy root induction from detached leaves showed to be an efficient, practical, fast, and low-cost method suitable for high throughput in root analysis of candidate genes in soybean

    Halofuginone for non-hospitalized adult patients with COVID-19 a multicenter, randomized placebo-controlled phase 2 trial. The HALOS trial.

    No full text
    BackgroundHalofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied.MethodsWe conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization.ResultsFrom September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days.ConclusionsAmong non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days

    Mapping of quantitative trait loci and confirmation of the FAT1 region on chromosome 4 in an F2 population of pigs

    No full text
    The objective was to map QTL on porcine chromosome 4 and to associate them with carcass and internal organ traits in an F2 population. The F1 population was produced by outbreed crossing, using two native Brazilian breed Piau boars and 18 commercial sows. A total of 617 F2 animals issued from 11 F1 boars and 54 F1 sows were typed for a total of five microsatellite markers. The data were analyzed by multiple regressions developed for the analysis of crosses between outbred lines, using the QTL Express software. Significant evidence for QTL was found for pig chromosome 4 regarding carcass and internal organ traits. All QTL were detected in the same region of the chromosome, designated FAT1

    Respiratory symptoms-free days up to day 10.

    No full text
    BackgroundHalofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied.MethodsWe conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization.ResultsFrom September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days.ConclusionsAmong non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days.</div

    Baseline characteristics of the patients<sup>a</sup>.

    No full text
    BackgroundHalofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied.MethodsWe conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization.ResultsFrom September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days.ConclusionsAmong non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days.</div

    Rhinorrhea-free days up to day 10.

    No full text
    BackgroundHalofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied.MethodsWe conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization.ResultsFrom September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days.ConclusionsAmong non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days.</div

    Post-hoc analysis.

    No full text
    BackgroundHalofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied.MethodsWe conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization.ResultsFrom September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days.ConclusionsAmong non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days.</div

    Cough-free days up to day 10.

    No full text
    BackgroundHalofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied.MethodsWe conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization.ResultsFrom September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days.ConclusionsAmong non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days.</div

    Symptoms free-days up to day 10.

    No full text
    BackgroundHalofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied.MethodsWe conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization.ResultsFrom September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days.ConclusionsAmong non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days.</div
    corecore