7,613 research outputs found

    Magnetic games between a planet and its host star: the key role of topology

    Get PDF
    Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfv\'enic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star-planet systems with three-dimensional, global, compressible magneto-hydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. The Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star-planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 101910^{19} W. Close-in planets are also showed to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.Comment: 15 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Galaxy Selection and Clustering and Lyman alpha Absorber Identification

    Full text link
    The effects of galaxy selection on our ability to constrain the nature of weak Ly\alpha absorbers at low redshift are explored. Current observations indicate the existence of a population of gas-rich, low surface brightness (LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha absorption. Absorption arising in LSB galaxies may be attributed to HSB galaxies at larger impact parameters from quasar lines of sight, so that the observed absorption cross sections of galaxies may seem unreasonably large. Thus it is not possible to rule out scenarios where LSB galaxies make substantial contributions to Ly\alpha absorption using direct observations. Less direct tests, where observational selection effects are taken into account using simulations, should make it possible to determine the nature of Ly\alpha absorbers by observing a sample of ~100 galaxies around quasar lines of sight with well-defined selection criteria. Such tests, which involve comparing simulated and observed plots of the unidentified absorber fractions and absorbing galaxy fractions versus impact parameter, can distinguish between scenarios where absorbers arise in particular galaxies and those where absorbers arise in gas tracing the large scale galaxy distribution. Care must be taken to minimize selection effects even when using these tests. Results from such tests are likely to depend upon the limiting neutral hydrogen column density. While not enough data are currently available to make a strong conclusion about the nature of moderately weak absorbers, evidence is seen that such absorbers arise in gas that is around or between galaxies that are often not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa

    Damped Lyman Alpha Systems at z<1.65: The Expanded SDSS HST Sample

    Full text link
    We present results of our HST Cycle 11 Survey for low-redshift (z<1.65) DLAs in the UV spectra of quasars selected from the SDSS Early Data Release. These quasars have strong intervening MgII-FeII systems which are known signatures of high column density neutral gas. In total, UV observations of Ly-alpha absorption in 197 MgII systems with z<1.65 and rest equivalent width (REW) W2796 \ge 0.3A have now been obtained. The main results are: (1) 36(+/- 6)% of systems with W2796 \ge 0.5 A and FeII W2600 \ge 0.5 A are DLAs. This increases to 42(+/- 7)% for systems with W2796/W2600 0.1 A. (2) The mean N(HI) of MgII systems with 0.3 A \le W2796 < 0.6 A is a factor of ~36 lower than that of systems with W2796 \ge 0.6 A. (3) The DLA incidence per unit redshift is consistent with no evolution for z <~ 2 (Omega_L=0.7, Omega_M = 0.3), but exhibits significant evolution for z >~ 2. (4) Omega_{DLA} is constant for 0.5<z<5.0 to within the uncertainties. This is larger than Omega_{gas}(z=0) by a factor of ~2. (5) The slope of the N(HI) distribution does not change significantly with redshift. However, the low redshift distribution is marginally flatter due to the higher fraction of high N(HI) systems in our sample. (6) Finally, using the precision of MgII survey statistics, we find that there may be evidence of a decreasing Omega_{DLA} from z=0.5 to z=0. We reiterate the conclusion of Hopkins, Rao, & Turnshek that very high columns of neutral gas might be missed by DLA surveys because of their very small cross sections, and therefore, that Omega_{DLA} might not include the bulk of the neutral gas mass in the Universe. (Abridged)Comment: Accepted for publication in ApJ. 22 pages, 22 figure

    Constraints on the Lyman continuum radiation from galaxies: first results with FUSE on Mrk 54

    Get PDF
    We present Far Ultraviolet Spectroscopic Explorer observations of the star-forming galaxy Mrk 54 at z = 0.0448. The Lyman continuum radiation is not detected above the HI absorption edge in our Galaxy. An upper limit is evaluated by comparison with the background measured in regions of the detector adjacent to the observed spectrum. A spectral window of 16 A, reasonably free of additional HI Lyman series line absorption is used. No correction is needed for molecular hydrogen absorption in our Galaxy but a foreground extinction of 0.29 mag is accounted for. An upper limit of 6.15 10^{-16} erg/cm^2/s/A is obtained for the flux at ~ 900 A in the rest frame of Mrk 54. By comparison with the number of ionizing photons derived from the H-alpha flux, this limit translates into an upper limit of f_esc < 0.062 for the fraction of Lyman continuum photons that escape the galaxy without being absorbed by interstellar material. This limit compares with the limits obtained in three other nearby galaxies and is compatible with the escape fractions predicted by models. The upper limits obtained in nearby galaxies contrasts with the detection of Lyman continuum flux in the composite spectrum of Lyman-break galaxies at z ~ 3.4. The difficulties and implications of a comparison are discussed.Comment: 9 pages, 3 figures, accepted for publication in A&A include aa.cls v5.0

    Proximity effect between two superconductors spatially resolved by scanning tunneling spectroscopy

    Full text link
    We present a combined experimental and theoretical study of the proximity effect in an atomic-scale controlled junction between two different superconductors. Elaborated on a Si(111) surface, the junction comprises a Pb nanocrystal with an energy gap of 1.2 meV, connected to a crystalline atomic monolayer of lead with a gap of 0.23 meV. Using in situ scanning tunneling spectroscopy we probe the local density of states of this hybrid system both in space and in energy, at temperatures below and above the critical temperature of the superconducting monolayer. Direct and inverse proximity effects are revealed with high resolution. Our observations are precisely explained with the help of a self-consistent solution of the Usadel equations. In particular, our results demonstrate that in the vicinity of the Pb islands, the Pb monolayer locally develops a finite proximity-induced superconducting order parameter, well above its own bulk critical temperature. This leads to a giant proximity effect where the superconducting correlations penetrate inside the monolayer a distance much larger than in a non-superconducting metal.Comment: 13 pages, 14 figures, accepted for publication in Physical Review

    Preliminary Results on gamma gamma -> Ks K pi from CLEO

    Full text link
    We analyzed 13.8 fb^{-1} of the integrated e+e- luminosity collected at 10.6 GeV center-of-mass energy with the CLEO II and II.V detectors to study exclusive two-photon production of single hadronic resonances. We searched for hadrons decaying into Ks K pi when both leptons remain undetected. In this analysis we studied the detection efficiency and evaluated systematic errors using independent data samples. We estimated 90% CL upper limits on the products of the two-photon partial widths of (pseudo)scalar hadrons with masses below 1.7 GeV/c2 and their branching fractions into Ks K pi. Our preliminary results are marginally consistent with the first observation of eta(1440) in two-photon collisions by the L3 experiment.Comment: 4 pages, 1 figure, proceedings contribution for PANIC'0
    corecore