40 research outputs found

    SMG-1 and mTORC1 Act Antagonistically to Regulate Response to Injury and Growth in Planarians

    Get PDF
    Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling

    Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Get PDF
    BACKGROUND: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. RESULTS: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1`s role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3` UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. CONCLUSIONS: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels

    A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors

    Get PDF
    BACKGROUND: Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. RESULT: We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. CONCLUSIONS: Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users

    A many-analysts approach to the relation between religiosity and well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β=0.120). For the second research question, this was the case for 65% of the teams (median reported β=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates

    Acute effects of removing large fish from a near-pristine coral reef.

    Full text link
    Large animals are severely depleted in many ecosystems, yet we are only beginning to understand the ecological implications of their loss. To empirically measure the short-term effects of removing large animals from an ocean ecosystem, we used exclosures to remove large fish from a near-pristine coral reef at Palmyra Atoll, Central Pacific Ocean. We identified a range of effects that followed from the removal of these large fish. These effects were revealed within weeks of their removal. Removing large fish (1) altered the behavior of prey fish; (2) reduced rates of herbivory on certain species of reef algae; (3) had both direct positive (reduced mortality of coral recruits) and indirect negative (through reduced grazing pressure on competitive algae) impacts on recruiting corals; and (4) tended to decrease abundances of small mobile benthic invertebrates. Results of this kind help advance our understanding of the ecological importance of large animals in ecosystems

    Reduced white matter integrity in sibling pairs discordant for bipolar disorder

    Get PDF
    Objective: Several lines of evidence indicate that white matter integrity is compromised in bipolar disorder, but the nature, extent, and biological causes remain elusive. To determine the extent to which white matter deficits in bipolar disorder are familial, the authors investigated white matter integrity in a large sample of bipolar patients, unaffected siblings, and healthy comparison subjects. Method: The authors collected diffusion imaging data for 64 adult bipolar patients, 60 unaffected siblings (including 54 discordant sibling pairs), and 46 demographically matched comparison subjects. Fractional anisotropy was compared between the groups using voxel-wise tract-based spatial statistics and by extracting mean fractional anisotropy from 10 regions of interest. Additionally, intraclass correlation coefficients were calculated between the sibling pairs as an index of familiality. Results: Widespread fractional anisotropy reductions in bipolar patients (&gt;40,000 voxels) and more subtle reductions in their siblings, mainly restricted to the corpus callosum, posterior thalamic radiations, and left superior longitudinal fasciculus (&gt;2,000 voxels) were observed. Similarly, region-of-interest analysis revealed significant reductions in most white matter regions in patients. In siblings, fractional anisotropy in the posterior thalamic radiation and the forceps was nominally reduced. Significant between-sibling correlations were found for mean fractional anisotropy across the tract-based spatial statistic skeleton, within significant clusters, and within nearly all regions of interest. Conclusions: These findings emphasize the relevance of white matter to neuropathology and familiality of bipolar disorder and encourage further use of white matter integrity markers as endophenotypes in genetic studies.</p
    corecore