12 research outputs found

    Novel HSPG2 Gene Mutation Causing Schwartz–Jampel Syndrome in a Moroccan Family: A Literature Review

    No full text
    Schwartz–Jampel syndrome type 1 (SJS1) is a rare autosomal recessive musculoskeletal disorder caused by various mutations in the HSPG2 gene encoding the protein perlecan, a major component of basement membranes. We report a novel splice mutation HSPG2(NM_005529.7):c.3888 + 1G > A and a known point mutation HSPG2(NM_005529.7):c.8464G > A, leading to the skipping of exon 31 and 64 in mRNA, respectively, in a Moroccan child with clinical features suggestive of SJS1 and carrying two compound heterozygous mutations in the HSPG2 gene detected by next-generation sequencing. Both parents harboured one mutation. Real-time and immunostaining analysis revealed down-regulation of the HSPG2 gene and a mild reduction in the protein in the muscle, respectively. We reviewed all genetically characterized SJS1 cases reported in literature, confirming the clinical hallmarks and unspecific instrumental data in our case. The genotype–phenotype correlation is very challenging in SJS1. Therapy is mainly focused on symptom management and several drugs have been administered with different efficacy.Here, we report the second case with spontaneous improvement

    Toll-like receptors and IL-7 as potential biomarkers for immune-mediated necrotizing myopathies

    No full text
    We aimed to verify whether the immune system may represent a source of potential biomarkers for the stratification of immune-mediated necrotizing myopathies (IMNMs) subtypes. A group of 22 patients diagnosed with IMNM [7 with autoantibodies against signal recognition particle (SRP) and 15 against 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR)] and 12 controls, were included. A significant preponderance of M1 macrophages was observed in both SRP+ and HMGCR+ muscle samples (p < 0.0001 in SRP+ and p = 0.0316 for HMGCR+), with higher values for SRP+ (p = 0.01). Despite the significant increase observed in the expression of TLR4 and all endosomal TLRs at protein level in IMNM muscle tissue, only TLR7 has been shown considerably up-regulated compared to controls at transcript level (p = 0.0026), whereas TLR9 was even decreased. (p = 0.0223). Within IMNM subgroups, TLR4 (p = 0.0116) mRNA was significantly increased in SRP+ compared to HMGCR+ patients. Within IMNM group, only IL-7 was differentially expressed between SRP+ and HMGCR+ patients, with higher values in SRP+ patients (p = 0.0468). Overall, innate immunity represents a key player in pathological mechanisms of IMNM. TLR4 and the inflammatory cytokine IL-7 represent potential immune biomarkers able to differentiate between SRP+ and HMGCR+ patients. This article is protected by copyright. All rights reserved

    A c.1775C > T Point Mutation of Sodium Channel Alfa Subunit Gene (SCN4A) in a Three-Generation Sardinian Family with Sodium Channel Myotonia

    No full text
    Background: The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods: Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results: A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions: The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia

    Mutations associated with hypokalemic periodic paralysis: from hotspot regions to complete analysis of CACNA1S and SCN4A genes

    No full text
    Familial periodic paralyses (PPs) are inherited disorders of skeletal muscle characterized by recurrent episodes of flaccid muscle weakness. PPs are classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. HypoPP is an autosomal dominant disease caused by mutations in the CACNA1S gene, encoding for Cav1.1 channel (HypoPP-1), or SCN4A gene, encoding for Nav1.4 channel (HypoPP-2). In the present study, we included 60 patients with a clinical diagnosis of HypoPP. Fifty-one (85%) patients were tested using the direct sequencing (Sanger method) of all reported HypoPP mutations in CACNA1S and SCN4A genes; the remaining 9 (15%) patients were analyzed through a next-generation sequencing (NGS) panel, including the whole CACNA1S and SCN4A genes, plus other genes rarely associated to PPs. Fifty patients resulted mutated: 38 (76%) cases showed p.R528H and p.R1239G/H CACNA1S mutations and 12 (24%) displayed p.R669H, p.R672C/H, p.R1132G/Q, and p.R1135H SCN4A mutations. Forty-one mutated cases were identified among the 51 patients managed with Sanger sequencing, while all the 9 cases directly analyzed with the NGS panel showed mutations in the hotspot regions of SCN4A and CACNA1S. Ten out of the 51 patients unresolved through the Sanger sequencing were further analyzed with the NGS panel, without the detection of any mutation. Hence, our data suggest that in HypoPP patients, the extension of genetic analysis from the hotspot regions using the Sanger method to the NGS sequencing of the entire CACNA1S and SCN4A genes does not lead to the identification of new pathological mutations

    Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia

    No full text
    Non-dystrophic myotonias are characterized by clinical overlap making it challenging to establish genotype-phenotype correlations. We report clinical and electrophysiological findings in a girl and her father concomitantly harbouring single heterozygous mutations in SCN4A and CLCN1 genes. Functional characterization of N1297S hNav1.4 mutant was performed by patch clamp. The patients displayed a mild phenotype, mostly resembling a sodium channel myotonia. The CLCN1 c.501C>G (p.F167L) mutation has been already described in recessive pedigrees, whereas the SCN4A c.3890A>G (p.N1297S) variation is novel. Patch clamp experiments showed impairment of fast and slow inactivation of the mutated Nav1.4 sodium channel. The present findings suggest that analysis of both SCN4A and CLCN1 genes should be considered in myotonic patients with atypical clinical and neurophysiological features

    Coexistence of SCN4A and CLCN1 mutations in a family with atypical myotonic features: A clinical and functional study

    No full text
    Non-dystrophic myotonias include several entities with possible clinical overlap, i.e. myotonia congenita caused by CLCN1 gene mutations, as well as paramyotonia congenita and sodium channel myotonia caused by SCN4A gene mutations. Herein, we describe the clinical features of five relatives affected by clinical and neurophysi-ological myotonia, with an aspecific and mixed phenotype. Next-generation sequencing identified the novel p. K1302R variant in SCN4A and the p.H838P variant in CLCN1. Segregation of the two mutations with the disease was confirmed by genotyping affected and non-affected family members. Patch-clamp experiments showed that sodium currents generated by p.K1302R and WT hNav1.4 were very similar. Mutant channel showed a small negative shift (5 mV) in the voltage-dependence of activation, which increased the likelihood of the channel to open at more negative voltages. The p.H838P mutation caused a reduction in chloride current density and a small voltage-dependence shift towards less negative potentials, in agreement with its position into the CBS2 domain of the C-terminus. Our results demonstrated that the mild functional alterations induced by p.K1302R and p.H838P in combination may be responsible for the mixed myotonic phenotypes. The K1302R mutant was sensitive to mexiletine and lamotrigine, suggesting that both drugs might be useful for the K1302R carriers

    Italian recommendations for diagnosis and management of congenital myasthenic syndromes

    No full text
    Abstract Congenital myasthenic syndromes (CMS) are genetic disorders due to mutations in genes encoding proteins involved in the neuromuscular junction structure and function. CMS usually present in young children, but perinatal and adult onset has been reported. Clinical presentation is highly heterogeneous, ranging from mild symptoms to severe manifestations, sometimes with life-threatening respiratory episodes, especially in the first decade of life. Although considered rare, CMS are probably underestimated due to diagnostic difficulties. Because of the several therapeutic opportunities, CMS should be always considered in the differential diagnosis of neuromuscular disorders. The Italian Network on CMS proposes here recommendations for proper CMS diagnosis and management, aiming to guide clinicians in their practical approach to CMS patients

    Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies

    Get PDF
    Myotonia congenita is an inherited disease that is characterized by impaired muscle relaxation after contraction caused by loss-of-function mutations in the skeletal muscle ClC-1 channel. We report a novel ClC-1 mutation, T335N, that is associated with a mild phenotype in 1 patient, located in the extracellular I-J loop. The purpose of this study was to provide a solid correlation between T335N dysfunction and clinical symptoms in the affected patient as well as to offer hints for drug development. Our multidisciplinary approach includes patch-clamp electrophysiology on T335N and ClC-1 wild-type channels expressed in tsA201 cells, Western blot and quantitative PCR analyses on muscle biopsies from patient and unaffected individuals, and molecular dynamics simulations using a homology model of the ClC-1 dimer. T335N channels display reduced chloride currents as a result of gating alterations rather than altered surface expression. Molecular dynamics simulations suggest that the I-J loop might be involved in conformational changes that occur at the dimer interface, thus affecting gating. Finally, the gene expression profile of T335N carrier showed a diverse expression of K(+) channel genes, compared with control individuals, as potentially contributing to the phenotype. This experimental paradigm satisfactorily explained myotonia in the patient. Furthermore, it could be relevant to the study and therapy of any channelopathy

    Next-generation sequencing application to investigate skeletal muscle channelopathies in a large cohort of Italian patients

    No full text
    Non-dystrophic myotonias and periodic paralyses are a heterogeneous group of disabling diseases classified as skeletal muscle channelopathies. Their genetic characterization is essential for prognostic and therapeutic purposes; however, several genes are involved. Sanger-based sequencing of a single gene is time-consuming, often expensive; thus, we designed a next-generation sequencing panel of 56 putative candidate genes for skeletal muscle channelopathies, codifying for proteins involved in excitability, excitation-contraction coupling, and metabolism of muscle fibres. We analyzed a large cohort of 109 Italian patients with a suspect of NDM or PP by next-generation sequencing. We identified 24 patients mutated in CLCN1 gene, 15 in SCN4A, 3 in both CLCN1 and SCN4A, 1 in ATP2A1, 1 in KCNA1 and 1 in CASQ1. Eight were novel mutations: p.G395Cfs*32, p.L843P, p.V829M, p.E258E and c.1471+4delTCAAGAC in CLCN1, p.K1302R in SCN4A, p.L208P in ATP2A1 and c.280-1G>C in CASQ1 genes. This study demonstrated the utility of targeted next generation sequencing approach in molecular diagnosis of skeletal muscle channelopathies and the importance of the collaboration between clinicians and molecular geneticists and additional methods for unclear variants to make a conclusive diagnosis

    Clinical and Molecular Spectrum of Myotonia and Periodic Paralyses Associated With Mutations in SCN4A in a Large Cohort of Italian Patients

    No full text
    Background: Four main clinical phenotypes have been traditionally described in patients mutated in SCN4A, including sodium-channel myotonia (SCM), paramyotonia congenita (PMC), Hypokaliemic type II (HypoPP2), and Hyperkaliemic/Normokaliemic periodic paralysis (HyperPP/NormoPP); in addition, rare phenotypes associated with mutations in SCN4A are congenital myasthenic syndrome and congenital myopathy. However, only scarce data have been reported in literature on large patient cohorts including phenotypes characterized by myotonia and episodes of paralysis. Methods: We retrospectively investigated clinical and molecular features of 80 patients fulfilling the following criteria: (1) clinical and neurophysiological diagnosis of myotonia, or clinical diagnosis of PP, and (2) presence of a pathogenic SCN4A gene variant. Patients presenting at birth with episodic laryngospasm or congenital myopathy-like phenotype with later onset of myotonia were considered as neonatal SCN4A. Results: PMC was observed in 36 (45%) patients, SCM in 30 (37.5%), Hyper/NormoPP in 7 (8.7%), HypoPP2 in 3 (3.7%), and neonatal SCN4A in 4 (5%). The median age at onset was significantly earlier in PMC than in SCM (p < 0.01) and in Hyper/NormoPP than in HypoPP2 (p = 0.02). Cold-induced myotonia was more frequently observed in PMC (n = 34) than in SCM (n = 23) (p = 0.04). No significant difference was found in age at onset of episodes of paralysis among PMC and PP or in frequency of permanent weakness between PP (n = 4), SCM (n = 5), and PMC (n = 10). PP was more frequently associated with mutations in the S4 region of the NaV1.4 channel protein compared to SCM and PMC (p < 0.01); mutations causing PMC were concentrated in the C-terminal region of the protein, while SCM-associated mutations were detected in all the protein domains. Conclusions: Our data suggest that skeletal muscle channelopathies associated with mutations in SCN4A represent a continuum in the clinical spectrum
    corecore