14 research outputs found

    Assessing changes in global fire regimes

    Get PDF
    PAGES, Past Global Changes, is funded by the Swiss Academy of Sciences and the Chinese Academy of Sciences and supported in kind by the University of Bern, Switzerland. Financial support was provided by the U.S. National Science Foundation award numbers 1916565, EAR-2011439, and EAR-2012123. Additional support was provided by the Utah Department of Natural Resources Watershed Restoration Initiative. SSS was supported by Brigham Young University Graduate Studies. MS was supported by National Science Centre, Poland (grant no. 2018/31/B/ST10/02498 and 2021/41/B/ST10/00060). JCA was supported by the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreement No 101026211. PF contributed within the framework of the FCT-funded project no. UIDB/04033/2020. SGAF acknowledges support from Trond Mohn Stiftelse (TMS) and University of Bergen for the startup grant ‘TMS2022STG03’. JMP participation in this research was supported by the Forest Research Centre, a research unit funded by Fundação para a CiĂȘncia e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020). A.-LD acknowledge PAGES, PICS CNRS 06484 project, CNRS-INSU, RĂ©gion Nouvelle-Aquitaine, University of Bordeaux DRI and INQUA for workshop support.Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.Peer reviewe

    Impact of Pleistocene-Holocene climate shifts on vegetation and fire dynamics and its implications for Prearchaic humans in the central Great Basin, USA

    Get PDF
    The effects of climate change during the Terminal Pleistocene–Early Holocene transition on ecosystems and early Prearchaic hunter-gatherers in the central Great Basin of North America are not well understood. We present a palynological reconstruction of regional vegetation and fire history in Grass Valley, central Nevada, from ~14 to ~7.5k cal a BP showing that Pinus-dominated woodlands were replaced by dry-adapted steppe and desert vegetation accompanied by an increase in regional fire activity at the beginning of the Holocene, in response to summer warming and a drying climate. Following a severe drought period peaking ~10.2–9.3k cal a BP, Pinus woodlands partially recovered contemporaneously with the 8.2k cal a BP climate anomaly. Local wetlands provided important resource patches for human foraging societies, and periodic declines of wetlands in response to changing local hydrological conditions may have necessitated adjustments in subsistence and settlement practices and technology

    14,500 years of vegetation and land use history in the upper continental montane zone at Lac de Champex (Valais, Switzerland)

    Get PDF
    Forests in the upper continental montane zone are important ecotones between lowland and subalpine forest ecosystems. A thorough understanding of the past vegetation dynamics at mid elevation is crucial to assess past and future altitudinal range shifts of tree species in response to climate change. Lake sediments from Lac de Champex (1,467 m a.s.l.), a small lake in the Canton Valais in the Central Swiss Alps were analysed to reconstruct the vegetation, land use and fire history for the last 14,500 years, using pollen, macrofossils, non-pollen palynomorphs and charcoal. The record indicates that the tree line had already reached the Champex area during the Allerþd (14,000 cal BP) but dropped below the lake’s catchment during the Younger Dryas cooling (12,750–11,550 cal BP). Reforestation started again with Betula and Pinus sylvestris in the Early Holocene at 11,500 cal BP in response to rapid climate warming. Temperate tree species (Ulmus, Tilia, Quercus, Acer) may have reached the altitude of the lake during the Holocene Thermal Maximum (ca. 10,000–5,000 cal BP). Mixed forests with mesophilous Abies alba were dominant between 7,500 and 5,000 cal BP. The mass expansions of Picea abies after 5,000 cal BP and Alnus viridis thickets after 4,500 cal BP were directly linked to increasing human disturbance. High values of coprophilous Sporormiella fungal spores and cereal pollen suggest pastoral and arable farming at the site from the Late Neolithic/Early Bronze Age onwards (5,000 cal BP). Our data imply that vegetation at intermediate elevation was less affected by human activities than at higher or lower elevations but that these areas served as important stations between the permanent settlements in the valleys and the seasonally occupied alpine huts at higher elevations. We argue that future climate warming will lead to drastic reorganizations of mountain ecosystems

    Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand

    No full text
    New Zealand was among the last habitable places on earth to be colonized by humans. Charcoal records indicate that wildfires were rare prior to colonization and widespread following the 13th- to 14th-century Māori settlement, but the precise timing and magnitude of associated biomass-burning emissions are unknown, as are effects on light-absorbing black carbon aerosol concentrations over the pristine Southern Ocean and Antarctica. Here we used an array of well-dated Antarctic ice-core records to show that while black carbon deposition rates were stable over continental Antarctica during the past two millennia, they were approximately threefold higher over the northern Antarctic Peninsula during the past 700 years. Aerosol modelling demonstrates that the observed deposition could result only from increased emissions poleward of 40° S—implicating fires in Tasmania, New Zealand and Patagonia—but only New Zealand palaeofire records indicate coincident increases. Rapid deposition increases started in 1297 (±30 s.d.) in the northern Antarctic Peninsula, consistent with the late 13th-century Māori settlement and New Zealand black carbon emissions of 36 (±21 2 s.d.) Gg y−1 during peak deposition in the 16th century. While charcoal and pollen records suggest earlier, climate-modulated burning in Tasmania and southern Patagonia, deposition in Antarctica shows that black carbon emissions from burning in New Zealand dwarfed other preindustrial emissions in these regions during the past 2,000 years, providing clear evidence of large-scale environmental effects associated with early human activities across the remote Southern Hemisphere
    corecore