3 research outputs found

    The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen

    Get PDF
    Parasitic plants of the genus Cuscuta penetrate shoots of host plants with haustoria and build a connection to the host vasculature to exhaust water, solutes and carbohydrates. Such infections usually stay unrecognized by the host and lead to harmful host plant damage. Here, we show a molecular mechanism of how plants can sense parasitic Cuscuta. We isolated an 11 kDa protein of the parasite cell wall and identified it as a glycine-rich protein (GRP). This GRP, as well as its minimal peptide epitope Crip21, serve as a pathogen-associated molecular pattern and specifically bind and activate a membrane-bound immune receptor of tomato, the Cuscuta Receptor 1 (CuRe1), leading to defense responses in resistant hosts. These findings provide the initial steps to understand the resistance mechanisms against parasitic plants and further offer great potential for protecting crops by engineering resistance against parasitic plants

    A host-free transcriptome for haustoriogenesis in Cuscuta campestris: signature gene expression identifies markers of successive development stages

    Get PDF
    The development of the infection organ of the parasitic angiosperm genus Cuscuta is a dynamic process that is normally obscured from view as it happens endophytically in its host. We artificially induced haustoriogenesis in C. campestris by far-red light to define specific morphologically different stages and analyze their transcriptional patterns. This information enabled us to extract sets of high-confidence housekeeping and marker genes for the different stages, which were then validated in a natural infection setting on a compatible host. This study provides a framework for more reproducible investigations of haustoriogenesis and the processes governing host-parasite interactions in shoot parasites, with C. campestris as a model species
    corecore