96 research outputs found

    Scaling rules in optomechanical semiconductor micropillars

    Get PDF
    International audienceSemiconductor pillar microcavities have recently emerged as a promising optomechanical platform in the unprecedented 20-GHz frequency range. Currently established models for the mechanical behavior of micropillars, however, rely on complete numerical simulations or semianalytical approaches, which makes their application to experiments notoriously difficult. Here we overcome this challenge with an effective model by reducing the full, hybridized mechanical mode picture of a micropillar to an approach that captures the observed global trends. We show experimentally the validity of this approach by studying the lateral size dependence of the frequency, amplitude, and lifetime of the mechanical modes of square-section pillar microcavities, using room-temperature pump-probe microscopy. General scaling rules for these quantities are found and explained through simple phenomenological models of the physical phenomena involved. We show that the energy shift ω m of the modes due to confinement is dependent on the inverse of their frequency ω 0 and lateral size L (ω m ∝ 1/ω 0 L 2) and that the mode lifetime τ is linear with pillar size and inversely proportional to their frequency (τ ∝ L/ω 0). The mode amplitude is in turn inversely proportional to the lateral size of the considered resonators. This is related to the dependence of the optomechanical coupling rate (g 0 ∝ 1/L) with the spatial extent of the confined electromagnetic and mechanical fields. Using a numerical model based on the finite-element method, we determine the magnitude and size dependence of g 0 and, by combining the results with the experimental data, we discuss the attainable single-photon cooperativity in these systems. The effective models proposed and the scaling rules found constitute an important tool in micropillar optomechanics and in the future development of more complex micropillar based devices

    Sub-harmonic resonant excitation of confined acoustic modes at GHz frequencies with a high-repetition-rate femtosecond laser

    Full text link
    We propose sub-harmonic resonant optical excitation with femtosecond lasers as a new method for the characterization of phononic and nanomechanical systems in the gigahertz to terahertz frequency range. This method is applied for the investigation of confined acoustic modes in a free-standing semiconductor membrane. By tuning the repetition rate of a femtosecond laser through a sub-harmonic of a mechanical resonance we amplify the mechanical amplitude, directly measure the linewidth with megahertz resolution, infer the lifetime of the coherently excited vibrational states, accurately determine the system's quality factor, and determine the amplitude of the mechanical motion with femtometer resolution

    Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire

    Get PDF
    Van der Waals (vdW) layered crystals and heterostructures have attracted substantial interest for potential applications in a wide range of emerging technologies. An important, but often overlooked, consideration in the development of implementable devices is phonon transport through the structure interfaces. Here we report on the interface properties of exfoliated InSe on a sapphire substrate. We use a picosecond acoustic technique to probe the phonon resonances in the InSe vdW layered crystal. Analysis of the nanomechanics indicates that the InSe is mechanically decoupled from the substrate and thus presents an elastically imperfect interface. A high degree of phonon isolation at the interface points toward applications in thermoelectric devices, or the inclusion of an acoustic transition layer in device design. These findings demonstrate basic properties of layered structures and so illustrate the usefulness of nanomechanical probing in nanolayer/nanolayer or nanolayer/substrate interface tuning in vdW heterostructures

    Dementia and COVID-19 in New Zealand, Chile, and Germany: A Research Agenda for Cross-Country Learning for Resilience in Health Care Systems

    Get PDF
    The COVID-19 pandemic has revealed existing gaps in policies, systems and services, stressing the need for concerted global action on healthy aging. Similar to the COVID-19 pandemic, dementia is a challenge for health systems on a global scale. Our hypothesis is that translational potential lies in cross-country learning by involving three high-income countries with distinct geo political-cultural-social systems in Latin America (Chile), the South Pacific (New Zealand) and Eu rope (Germany). Our vision is that such cross-country learning will lead to providing adequate, equitable and sustainable care and support for families living with dementia during a pandemic and beyond. We are proposing a vision for research that takes a multi-disciplinary, strength-based approach at the intersection of health care research, disaster research, global health research and dementia research. We present some insights in support of our hypothesis and proposed research agenda. We anticipate that this research has the potential to contribute towards strengthening and transforming health care systems in times of crises and beyond

    An overview of using small punch testing for mechanical characterization of MCrAlY bond coats

    Get PDF
    Considerable work has been carried out on overlay bond coats in the past several decades because of its excellent oxidation resistance and good adhesion between the top coat and superalloy substrate in the thermal barrier coating systems. Previous studies mainly focus on oxidation and diffusion behavior of these coatings. However, the mechanical behavior and the dominant fracture and deformation mechanisms of the overlay bond coats at different temperatures are still under investigation. Direct comparison between individual studies has not yet been achieved due to the fragmentary data on deposition processes, microstructure and, more apparently, the difficulty in accurately measuring the mechanical properties of thin coatings. One of the miniaturized specimen testing methods, small punch testing, appears to have the potential to provide such mechanical property measurements for thin coatings. The purpose of this paper is to give an overview of using small punch testing to evaluate material properties and to summarize the available mechanical properties that include the ductile-to-brittle transition and creep of MCrAlY bond coat alloys, in an attempt to understand the mechanical behavior of MCrAlY coatings over a broad temperature range

    Mikrobestimmung des Glycerins auf jodometrischem Wege

    No full text

    Zum Nachweis der Salizyls�ure

    No full text

    Zur Bestimmung des Azetaldehyds in Paraldehyd

    No full text
    corecore