2,378 research outputs found

    Noble gas films on a decagonal AlNiCo quasicrystal

    Full text link
    Thermodynamic properties of Ne, Ar, Kr, and Xe adsorbed on an Al-Ni-Co quasicrystalline surface (QC) are studied with Grand Canonical Monte Carlo by employing Lennard-Jones interactions with parameter values derived from experiments and traditional combining rules. In all the gas/QC systems, a layer-by-layer film growth is observed at low temperature. The monolayers have regular epitaxial fivefold arrangements which evolve toward sixfold close-packed structures as the pressure is increased. The final states can contain either considerable or negligible amounts of defects. In the latter case, there occurs a structural transition from five to sixfold symmetry which can be described by introducing an order parameter, whose evolution characterizes the transition to be continuous or discontinuous as in the case of Xe/QC (first-order transition with associated latent heat). By simulating fictitious noble gases, we find that the existence of the transition is correlated with the size mismatch between adsorbate and substrate's characteristic lengths. A simple rule is proposed to predict the phenomenon.Comment: 19 pages. 8 figures. (color figures can be seen at http://alpha.mems.duke.edu/wahyu/ or http://www.iop.org/EJ/abstract/0953-8984/19/1/016007/

    Brightest Cluster Galaxies and Core Gas Density in REXCESS Clusters

    Full text link
    We investigate the relationship between brightest cluster galaxies (BCGs) and their host clusters using a sample of nearby galaxy clusters from the Representative XMM Cluster Structure Survey (REXCESS). The sample was imaged with the Southern Observatory for Astrophysical Research (SOAR) in R band to investigate the mass of the old stellar population. Using a metric radius of 12h^-1 kpc, we found that the BCG luminosity depends weakly on overall cluster mass as L_BCG \propto M_cl^0.18+-0.07, consistent with previous work. We found that 90% of the BCGs are located within 0.035 r_500 of the peak of the X-ray emission, including all of the cool core (CC) clusters. We also found an unexpected correlation between the BCG metric luminosity and the core gas density for non-cool core (non-CC) clusters, following a power law of n_e \propto L_BCG^2.7+-0.4 (where n_e is measured at 0.008 r_500). The correlation is not easily explained by star formation (which is weak in non-CC clusters) or overall cluster mass (which is not correlated with core gas density). The trend persists even when the BCG is not located near the peak of the X-ray emission, so proximity is not necessary. We suggest that, for non-CC clusters, this correlation implies that the same process that sets the central entropy of the cluster gas also determines the central stellar density of the BCG, and that this underlying physical process is likely to be mergers.Comment: 16 pages, 8 figures, accepted Astrophysical Journa

    Xe films on a decagonal Al-Ni-Co quasicrystal surface

    Full text link
    The grand canonical Monte Carlo method is employed to study the adsorption of Xe on a quasicrystalline Al-Ni-Co surface. The calculation uses a semiempirical gas-surface interaction, based on conventional combining rules and the usual Lennard-Jones Xe-Xe interaction. The resulting adsorption isotherms and calculated structures are consistent with the results of LEED experimental data. In this paper we focus on five features not discussed earlier (Phys. Rev. Lett. 95, 136104 (2005)): the range of the average density of the adsorbate, the order of the transition, the orientational degeneracy of the ground state, the isosteric heat of adsorption of the system, and the effect of the vertical cell dimension.Comment: 6 pages, 5 pic

    Evolution of topological order in Xe films on a quasicrystal surface

    Full text link
    We report results of the first computer simulation studies of a physically adsorbed gas on a quasicrystalline surface, Xe on decagonal Al-Ni-Co. The grand canonical Monte Carlo method is employed, using a semi-empirical gas-surface interaction, based on conventional combining rules, and the usual Lennard-Jones Xe-Xe interaction. The resulting adsorption isotherms and calculated structures are consistent with the results of LEED experimental data. The evolution of the bulk film begins in the second layer, while the low coverage behavior is epitaxial. This transition from 5-fold to 6-fold ordering is temperature dependent, occurring earlier (at lower coverage) for the higher temperatures

    Flickering in FU Orionis

    Get PDF
    We analyze new and published optical photometric data of FU Orionis, an eruptive pre-main sequence star. The outburst consists of a 5.5 mag rise at B with an e-folding timescale of roughly 50 days. The rates of decline at B and V are identical, 0.015 +- 0.001 mag per yr. Random fluctuations superimposed on this decline have an amplitude of 0.035 +- 0.005 mag at V and occur on timescales of 1 day or less. Correlations between V and the color indices U-B, B-V, and V-R indicate that the variable source has the optical colors of a G0 supergiant. We associate this behavior with small amplitude flickering of the inner accretion disk.Comment: 19 pages of text, 3 tables, and 6 figures to be published in the Astrophysical Journal, 10 March 200

    UBVRI observations of the flickering of RS Ophiuchi at Quiescence

    Full text link
    We report observations of the flickering variability of the recurrent nova RS Oph at quiescence on the basis of simultaneous observations in 5 bands (UBVRI). RS Oph has flickering source with (U-B)_0=-0.62 \pm 0.07, (B-V)_0=0.15 \pm 0.10, (V-R)_0=0.25 \pm 0.05. We find for the flickering source a temperature T_fl = 9500 \pm 500 K, and luminosity L_fl = 50 - 150 L_sun (using a distance of d=1.6kpc). We also find that on a (U-B) vs (B-V) diagram the flickering of the symbiotic stars differs from that of the cataclysmic variables. The possible source of the flickering is discussed. The data are available upon request from the authors and on the web www.astro.bas.bg/~rz/RSOph.UBVRI.2010.MNRAS.tar.gz.Comment: 7 pages, MNRAS (accepted

    Physical Adsorption at the Nanoscale: Towards Controllable Scaling of the Substrate-Adsorbate van der Waals Interaction

    Get PDF
    The Lifshitz-Zaremba-Kohn (LZK) theory is commonly considered as the correct large-distance limit for the van der Waals (vdW) interaction of adsorbates (atoms, molecules, or nanoparticles) with solid substrates. In the standard approximate form, implicitly based on "local" dielectric functions, the LZK approach predicts universal power laws for vdW interactions depending only on the dimensionality of the interacting objects. However, recent experimental findings are challenging the universality of this theoretical approach at finite distances of relevance for nanoscale assembly. Here, we present a combined analytical and numerical many-body study demonstrating that physical adsorption can be significantly enhanced at the nanoscale. Regardless of the band gap or the nature of the adsorbate specie, we find deviations from conventional LZK power laws that extend to separation distances of up to 10--20 nanometers. Comparison with recent experimental observation of ultra long-ranged vdW interactions in the delamination of graphene from a silicon substrate reveals qualitative agreement with the present theory. The sensitivity of vdW interactions to the substrate response and to the adsorbate characteristic excitation frequency also suggests that adsorption strength can be effectively tuned in experiments, paving the way to an improved control of physical adsorption at the nanoscale

    Gator: a low-background counting facility at the Gran Sasso Underground Laboratory

    Full text link
    A low-background germanium spectrometer has been installed and is being operated in an ultra-low background shield (the Gator facility) at the Gran Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16 events/min in the energy range between 100-2700 keV, the background is comparable to those of the world's most sensitive germanium detectors. After a detailed description of the facility, its background sources as well as the calibration and efficiency measurements are introduced. Two independent analysis methods are described and compared using examples from selected sample measurements. The Gator facility is used to screen materials for XENON, GERDA, and in the context of next-generation astroparticle physics facilities such as DARWIN.Comment: 14 pages, 6 figures, published versio

    The MuPix Telescope: A Thin, high Rate Tracking Telescope

    Full text link
    The MuPix Telescope is a particle tracking telescope, optimized for tracking low momentum particles and high rates. It is based on the novel High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), designed for the Mu3e tracking detector. The telescope represents a first application of the HV-MAPS technology and also serves as test bed of the Mu3e readout chain. The telescope consists of up to eight layers of the newest prototypes, the MuPix7 sensors, which send data self-triggered via fast serial links to FPGAs, where the data is time-ordered and sent to the PC. A particle hit rate of 1 MHz per layer could be processed. Online tracking is performed with a subset of the incoming data. The general concept of the telescope, chip architecture, readout concept and online reconstruction are described. The performance of the sensor and of the telescope during test beam measurements are presented.Comment: Proceedings TWEPP 2016, 8 pages, 7 figure

    Bose-Einstein Condensation of Helium and Hydrogen inside Bundles of Carbon Nanotubes

    Full text link
    Helium atoms or hydrogen molecules are believed to be strongly bound within the interstitial channels (between three carbon nanotubes) within a bundle of many nanotubes. The effects on adsorption of a nonuniform distribution of tubes are evaluated. The energy of a single particle state is the sum of a discrete transverse energy Et (that depends on the radii of neighboring tubes) and a quasicontinuous energy Ez of relatively free motion parallel to the axis of the tubes. At low temperature, the particles occupy the lowest energy states, the focus of this study. The transverse energy attains a global minimum value (Et=Emin) for radii near Rmin=9.95 Ang. for H2 and 8.48 Ang.for He-4. The density of states N(E) near the lowest energy is found to vary linearly above this threshold value, i.e. N(E) is proportional to (E-Emin). As a result, there occurs a Bose-Einstein condensation of the molecules into the channel with the lowest transverse energy. The transition is characterized approximately as that of a four dimensional gas, neglecting the interactions between the adsorbed particles. The phenomenon is observable, in principle, from a singular heat capacity. The existence of this transition depends on the sample having a relatively broad distribution of radii values that include some near Rmin.Comment: 21 pages, 9 figure
    • …
    corecore