1,802 research outputs found

    An Integration of Biographical Data and Personality Research Through Sherwood Forest Empiricism: Robbing From Personality to Give to Biodata.

    Get PDF
    Archival data was used to assess the effectiveness of incorporating biodata scoring into extant personality measures. Personality and biodata theories were briefly reviewed and several commonalities were noted. Hypotheses were developed for Conscientiousness, Emotional Stability, Agreeableness, and Openness to Experience. The first three dimensions were expected to predict absenteeism and all four were expected to predict turnover, and empirical scoring was expected to increase predictive validity. Data were collected from three samples (school bus drivers, bus drivers, and law enforcement) and three different personality measures were scored using England\u27s (1971) vertical percent method. Results showed that two of the three samples did not produce significant correlations between personality and two criterion measures. Only the correlation between Conscientiousness and absenteeism (r =.13) for the law enforcement sample was similar to Barrick and Mount\u27s (1991) results. Personality profiles for high and low absenteeism employees, and stayers and leavers were compared, but the profiles did not contain the hypothesized elevations. Biodata scoring improved some correlations, but inconsistently, for law enforcement employees. Biodata scoring for this sample was most useful for predicting turnover. Correlations for the other samples were small and insignificant. Whereas biodata scoring provided incremental validity over the personality scales, the results were inconsistent and therefore did not support the hypotheses. Further, profiles developed through biodata scoring diverged from those developed via personality scoring. The interpretation of biodata profiles was difficult due to possible changes in scale meaning due to scoring. The overall component of personality and biodata profiles were compared and it was shown that sometimes the biodata overall component explained incremental variance. Limitations of the study included using incumbents versus applicants, a lack of specificity of the criterion measures, and an inability to compare the results from the three samples. Future studies are needed to determine possible applicant-incumbent differences for personality and biodata measures and determine possible changes in the structure of personality tests caused by empirical scoring. These results provide disconfirming evidence for personality research and support the need to reconsider the situational specificity hypothesis

    Pollution reduction technology program for small jet aircraft engines: Class T1

    Get PDF
    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated

    ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    Get PDF
    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested

    Pollution reduction technology program small jet aircraft engines, phase 3

    Get PDF
    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals

    Pollution Reduction Technology Program for Small Jet Aircraft Engines, Phase 2

    Get PDF
    A series of iterative combustor pressure rig tests were conducted on two combustor concepts applied to the AiResearch TFE731-2 turbofan engine combustion system for the purpose of optimizing combustor performance and operating characteristics consistant with low emissions. The two concepts were an axial air-assisted airblast fuel injection configuration with variable-geometry air swirlers and a staged premix/prevaporization configuration. The iterative rig testing and modification sequence on both concepts was intended to provide operational compatibility with the engine and determine one concept for further evaluation in a TFE731-2 engine

    Pollution reduction technology program for small jet aircraft engines, phase 1

    Get PDF
    A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine

    Photocatalytic Active Radiation Measurements and Use

    Get PDF
    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated spectrometer with a cosine receptor is used to measure the spectral irradiance. This measurement, in conjunction with the photocatalytic response as a function of wavelength, is used to estimate the PcAR. The photocatalytic response function is determined by measuring photocatalytic reactivity as a function of wavelength. In the second method, simple shaped photocatalytic response functions can be simulated with a broad-band detector with a cosine receptor appropriately filtered to represent the spectral response of the photocatalytic material. This second method can be less expensive than using a calibrated spectrometer

    Landscape effects on wild Bombus terrestris (Hymenoptera: Apidae) queens visiting highbush blueberry fields in south-central Chile

    Get PDF
    International audienceAbstractIn this study pollinators visiting highbush blueberry fields set in landscapes with differing land use pattern in south-central Chile were investigated. Effects of spatial buffers from 0.5 to 8 km around each blueberry field on the abundance of the main wild pollinator, Bombus terrestris queens, were tested. Wild B. terrestris abundances were positively affected by natural forest area and negatively affected by high-food resource area, and these effects were strongest at a buffer radius of 1 and 3.5 km, respectively. Possibly, continuous food resources provided by natural forest areas favor colony establishment and growth, and/or increase overwintering survival of bumblebee queens. Also, pollinator dependent crop area can generate a “transient dilution effect” by decreasing the density of bumblebees in simultaneously flowering crops. Management strategies might increase crop pollination services by considering the importance of nesting and overwintering habitat quality/amount and area of simultaneously flowering crops requiring insect pollination

    An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    Get PDF
    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor dye degradation on the slides over time, a temperature-stabilized white light LED was used to illuminate the opposite side of the slides. As the dye degraded, the amount of light from the white light LED transmitted through the slide was monitored with a spectrometer and subsequently analyzed to determine and compare the rate of dye degradation for photocatalytically coated versus uncoated slide surfaces. The long-term stability of the spectrometer/white light LED combination, which required only a single reference spectra to be taken for a time series sequence of several hours, enabled accurate measurements of transmitted light over time. Time series transmission curves were generated and results demonstrated that over time the transmission increased much more rapidly on the coated slides than on the control slides. This experimental configuration and methodology for photocatalytic activity measurement minimizes many external variable effects and allows low light level studies to be performed. This study also compares the advantages of this novel LED light source design to traditional mercury lamp systems and non-LED lamp approaches that have conventionally been used. The methodology and experimental design research summarized in this abstract is partly funded by the Department of Homeland Security, Science and Technology Directorate, and by the NASA Stennis Space Center Innovative Partnerships Program

    Starter Motor Sizing For Large Gas Turbine (Single-Shaft) Driven LNG Strings.

    Get PDF
    LecturePg. 7-16The purpose of this paper is to describe how computer simulation was used to size the main starter motors for single shaft gas turbine driven compressor strings used in a large LNG plant. The paper describes how the components of the system were modelled and discusses assumptions used in the calculations. The paper presents the actual computer output plots showing the predicted torque loading on the motor and the contributions of each of the components in the string to this predicted loading. The simulation program was also used to predict the loading of the motor during a full load test at the compressor vendor's facility. A torquemeter was used to measure the output of the motor during the string acceleration. The paper presents the results of the simulation prediction for the test runs and correlates the actual test measurements to the prediction
    corecore