326 research outputs found

    Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs

    Get PDF
    Abstract Background This paper uses simulation to explore how gene drives can increase genetic gain in livestock breeding programs. Gene drives are naturally occurring phenomena that cause a mutation on one chromosome to copy itself onto its homologous chromosome. Methods We simulated nine different breeding and editing scenarios with a common overall structure. Each scenario began with 21 generations of selection, followed by 20 generations of selection based on true breeding values where the breeder used selection alone, selection in combination with genome editing, or selection with genome editing and gene drives. In the scenarios that used gene drives, we varied the probability of successfully incorporating the gene drive. For each scenario, we evaluated genetic gain, genetic variance ( \u3c3 A 2 ) , rate of change in inbreeding ( \u394 F ), number of distinct quantitative trait nucleotides (QTN) edited, rate of increase in favourable allele frequencies of edited QTN and the time to fix favourable alleles. Results Gene drives enhanced the benefits of genome editing in seven ways: (1) they amplified the increase in genetic gain brought about by genome editing; (2) they amplified the rate of increase in the frequency of favourable alleles and reduced the time it took to fix them; (3) they enabled more rapid targeting of QTN with lesser effect for genome editing; (4) they distributed fixed editing resources across a larger number of distinct QTN across generations; (5) they focussed editing on a smaller number of QTN within a given generation; (6) they reduced the level of inbreeding when editing a subset of the sires; and (7) they increased the efficiency of converting genetic variation into genetic gain. Conclusions Genome editing in livestock breeding results in short-, medium- and long-term increases in genetic gain. The increase in genetic gain occurs because editing increases the frequency of favourable alleles in the population. Gene drives accelerate the increase in allele frequency caused by editing, which results in even higher genetic gain over a shorter period of time with no impact on inbreeding

    Do model polymer therapeutics sufficiently diffuse through articular cartilage to be a viable therapeutic route?

    Get PDF
    The ability of a polymer therapeutic to access the appropriate subcellular location is crucial to its efficacy, and is defined to a large part by the many and complex cellular biological and biochemical barriers such a construct must traverse. It is shown here that model dextrin conjugates are able to pass through a cartilaginous extracellular matrix into chondrocytes, with little perturbation of the matrix structure, indicating that targeting of potential therapeutics through a cartilaginous extracellular matrix should prove possible. Rapid chondrocytic targeting of drugs which require intracellularisation for their activity, and uniform extracellular concentrations of drugs with an extracellular target, is thus enabled though polymer conjugation

    Evidence of Segregated Spawning in a Single Marine Fish Stock: Sympatric Divergence of Ecotypes in Icelandic Cod?

    Get PDF
    There is increasing recognition of intraspecific diversity and population structure within marine fish species, yet there is little direct evidence of the isolating mechanisms that maintain it or documentation of its ecological extent. We analyzed depth and temperature histories collected by electronic data storage tags retrieved from 104 Atlantic cod at liberty ≥1 year to evaluate a possible isolating mechanisms maintaining population structure within the Icelandic cod stock. This stock consists of two distinct behavioral types, resident coastal cod and migratory frontal cod, each occurring within two geographically distinct populations. Despite being captured together on the same spawning grounds, we show the behavioral types seem reproductively isolated by fine-scale differences in spawning habitat selection, primarily depth. Additionally, the different groups occupied distinct seasonal thermal and bathymetric niches that generally demonstrated low levels of overlap throughout the year. Our results indicate that isolating mechanisms, such as differential habitat selection during spawning, might contribute to maintaining diversity and fine-scale population structure in broadcast-spawning marine fishes

    Bryozoans are Major Modern Builders of South Atlantic Oddly Shaped Reefs

    Get PDF
    Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27961-6.In major modern reef regions, either in the Indo-Pacific or the Caribbean, scleractinian corals are described as the main reef framework builders, often associated with crustose coralline algae. We used underwater cores to investigate Late Holocene reef growth and characterise the main framework builders in the Abrolhos Shelf, the largest and richest modern tropical reef complex in the South Western Atlantic, a scientifically underexplored reef province. Rather than a typical coralgal reef, our results show a complex framework building system dominated by bryozoans. Bryozoans were major components in all cores and age intervals (2,000 yrs BP), accounting for up to 44% of the reef framework, while crustose coralline algae and coral accounted for less than 28 and 23%, respectively. Reef accretion rates varied from 2.7 to 0.9 mm yr−1, which are similar to typical coralgal reefs. Bryozoan functional groups encompassed 20 taxa and Celleporaria atlantica (Busk, 1884) dominated the framework at all cores. While the prevalent mesotrophic conditions may have driven suspensionfeeders’ dominance over photoautotrophs and mixotrophs, we propose that a combination of historical factors with the low storm-disturbance regime of the tropical South Atlantic also contributed to the region’s low diversity, and underlies the unique mushroom shape of the Abrolhos pinnacles.We thank CNPq/FAPES-Sisbiota/PELD, CAPES/IODP, CAPES/Ciências do Mar, and ANP/Brasoil for long term project funding. We also thank ICMBio for research permits and field logistic support, and Conservation International for providing and authorizing the use of the IKONOS image. JMW and JCB are International Visiting Researcher at UFES and JBRJ, supported by the Science Without Borders program. Zá Cajueiro provided invaluable field support and Ronaldo Francini, Carlos Janovitch and Lucio Engler helped in the drilling operations. This is a contribution from the Rede Abrolhos (abrolhos.org)

    Male tobacco smoke load and non-lung cancer mortality associations in Massachusetts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different methods exist to estimate smoking attributable cancer mortality rates (Peto and Ezzati methods, as examples). However, the smoking attributable estimates using these methods cannot be generalized to all population sub-groups. A simpler method has recently been developed that can be adapted and applied to different population sub-groups. This study assessed cumulative tobacco smoke damage (smoke load)/non-lung cancer mortality associations across time from 1979 to 2003 among all Massachusetts males and ages 30–74 years, using this novel methodology.</p> <p>Methods</p> <p>Annual lung cancer death rates were used as smoke load bio-indices, and age-adjusted lung/all other (non-lung) cancer death rates were analyzed with linear regression approach. Non-lung cancer death rates include all cancer deaths excluding lung. Smoking-attributable-fractions (SAFs) for the latest period (year 2003) were estimated as: 1-(estimated unexposed cancer death rate/observed rate).</p> <p>Results</p> <p>Male lung and non-lung cancer death rates have declined steadily since 1992. Lung and non-lung cancer death rates were tightly and steeply associated across years. The slopes of the associations analyzed were 1.69 (95% confidence interval (CI) 1.35–2.04, r = 0.90), and 1.36 (CI 1.14–1.58, r = 0.94) without detected autocorrelation (Durbin-Watson statistic = 1.8). The lung/non-lung cancer death rate associations suggest that all-sites cancer death rate SAFs in year 2003 were 73% (Sensitivity Range [SR] 61–82%) for all ages and 74% (SR 61–82%) for ages 30–74 years.</p> <p>Conclusion</p> <p>The strong lung/non-lung cancer death rate associations suggest that tobacco smoke load may be responsible for most prematurely fatal cancers at both lung and non-lung sites. The present method estimates are greater than the earlier estimates. Therefore, tobacco control may reduce cancer death rates more than previously noted.</p

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    The complete genome sequence and genetic analysis of ΦCA82 a novel uncultured microphage from the turkey gastrointestinal system

    Get PDF
    The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system
    corecore