288 research outputs found

    Modeling the Insulin-Like Growth Factor System in Articular Cartilage

    Get PDF
    IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on cartilage, we focus on two questions: (i) what are the key factors influencing IGF-IR complex formation, and (ii) how might cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent failures of single target drug therapies aimed at modifying IGF signaling.National Health and Medical Research Council (Australia) (APP1051455

    Comments on discrete time in quantum mechanics

    Get PDF
    The possibility that time can be regarded as a discrete parameter is re-examined. We study the dynamics of the free particle and find in some cases superluminal propagation

    Computational Modeling of Fluid Flow and Intra-Ocular Pressure following Glaucoma Surgery

    Get PDF
    Background Glaucoma surgery is the most effective means for lowering intraocular pressure by providing a new route for fluid to exit the eye. This new pathway is through the sclera of the eye into sub-conjunctival tissue, where a fluid filled bleb typically forms under the conjunctiva. The long-term success of the procedure relies on the capacity of the sub-conjunctival tissue to absorb the excess fluid presented to it, without generating excessive scar tissue during tissue remodeling that will shut-down fluid flow. The role of inflammatory factors that promote scarring are well researched yet little is known regarding the impact of physical forces on the healing response. Methodology To help elucidate the interplay of physical factors controlling the distribution and absorption of aqueous humor in sub-conjunctival tissue, and tissue remodeling, we have developed a computational model of fluid production in the eye and removal via the trabecular/uveoscleral pathways and the surgical pathway. This surgical pathway is then linked to a porous media computational model of a fluid bleb positioned within the sub-conjunctival tissue. The computational analysis is centered on typical functioning bleb geometry found in a human eye following glaucoma surgery. A parametric study is conducted of changes in fluid absorption by the sub-conjunctival blood vessels, changes in hydraulic conductivity due to scarring, and changes in bleb size and shape, and eye outflow facility. Conclusions This study is motivated by the fact that some blebs are known to have ‘successful’ characteristics that are generally described by clinicians as being low, diffuse and large without the formation of a distinct sub-conjunctival encapsulation. The model predictions are shown to accord with clinical observations in a number of key ways, specifically the variation of intra-ocular pressure with bleb size and shape and the correspondence between sites of predicted maximum interstitial fluid pressure and key features observed in blebs, which gives validity to the model described here. This model should contribute to a more complete explanation of the physical processes behind successful bleb characteristics and provide a new basis for clinically grading blebs

    Universal hidden order in amorphous cellular geometries

    Get PDF
    Partitioning space into cells with certain extreme geometrical properties is a central problem in many fields of science and technology. Here we investigate the Quantizer problem, defined as the optimisation of the moment of inertia of Voronoi cells, i.e., similarly-sized ‘sphere-like’ polyhedra that tile space are preferred. We employ Lloyd’s centroidal Voronoi diagram algorithm to solve this problem and find that it converges to disordered states associated with deep local minima. These states are universal in the sense that their structure factors are characterised by a complete independence of a wide class of initial conditions they evolved from. They moreover exhibit an anomalous suppression of long-wavelength density fluctuations and quickly become effectively hyperuniform. Our findings warrant the search for novel amorphous hyperuniform phases and cellular materials with unique physical properties

    Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts

    Get PDF
    Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens

    Universal hidden order in amorphous cellular geometries

    Get PDF
    Partitioning space into cells with certain extreme geometrical properties is a central problem in many fields of science and technology. Here we investigate the Quantizer problem, defined as the optimisation of the moment of inertia of Voronoi cells, i.e., similarly-sized ‘sphere-like’ polyhedra that tile space are preferred. We employ Lloyd’s centroidal Voronoi diagram algorithm to solve this problem and find that it converges to disordered states associated with deep local minima. These states are universal in the sense that their structure factors are characterised by a complete independence of a wide class of initial conditions they evolved from. They moreover exhibit an anomalous suppression of long-wavelength density fluctuations and quickly become effectively hyperuniform. Our findings warrant the search for novel amorphous hyperuniform phases and cellular materials with unique physical properties

    国立大学における「アドミッション・オフィサー」―教員主体の人員構成とその課題―

    Get PDF
    In this paper, we look back at the history of the birth of the profession called the “Admission Officers” belonging to the admission center of the national university. How many “Admission Officers” exist in national universities in Japan, and their personnel composition is we will clarify what is going on. In addition, we would like to consider the current status, issues, and future of "Admission Officers" in which faculty members are mainly in Japan

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Structure and lithium transport pathways in Li<sub>2</sub>FeSiO<sub>4</sub> cathodes for lithium batteries

    Get PDF
    The importance of exploring new low-cost and safe cathodes for large-scale lithium batteries has led to increasing interest in Li(2)FeSiO(4). The structure of Li(2)FeSiO(4) undergoes significant change on cycling, from the as-prepared γ(s) form to an inverse β(II) polymorph; therefore it is important to establish the structure of the cycled material. In γ(s) half the LiO(4), FeO(4), and SiO(4) tetrahedra point in opposite directions in an ordered manner and exhibit extensive edge sharing. Transformation to the inverse β(II) polymorph on cycling involves inversion of half the SiO(4), FeO(4), and LiO(4) tetrahedra, such that they all now point in the same direction, eliminating edge sharing between cation sites and flattening the oxygen layers. As a result of the structural changes, Li(+) transport paths and corresponding Li-Li separations in the cycled structure are quite different from the as-prepared material, as revealed here by computer modeling, and involve distinct zigzag paths between both Li sites and through intervening unoccupied octahedral sites that share faces with the LiO(4) tetrahedra

    Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants

    Get PDF
    Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a ‘gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans
    corecore