6,594 research outputs found
Is there compelling evidence for using the arts in health care?
A national arts and health policy framework being developed in 2012 proposes whole of government engagement to strengthen arts and health initiatives for community wellbeing.
This framework should assist health providers at all levels to assess existing programs, consider new directions and identify community partners for using the arts to improve treatment and build health. Arts and health practices create arts and cultural experiences that aim to improve health and wellbeing. The number of networks, projects and organisations contributing these practices to many different healthcare and community settings is increasing.
The whole range of art forms, including craft, writing, music, theatre and drama, dance, visual arts, film and new media, and multimodal combinations of these, is being used.
This paper briefly outlines evidence of the effectiveness of arts and health strategies across the whole spectrum of population needs, from interventions targeting the complex needs of a few to those appropriate to all. The focus in this brief is upon arts - based practice in clinical contexts, but evidence concerning arts and health in the community is also included
The Economics of Spruce Budworm Outbreaks in the Lake States: An Overview
Economic effects of spruce budworm outbreaks in the Lake States were examined. The recent outbreak caused spruce and fir mortality on 420 thousand ha (I.OS million acres) of commercial forest land in the Lake States. Two models of Lake States spruce-fir markets were developed. A Static Economic Model established the nature of the Lake States spruce-fir market and a Comparative Static Model examined changes brought about by spruce budworm outbreaks.
Outbreaks result in short-run supply shifts which probably decrease total revenue to stumpage owners but do not affect demand. The magnitude of long-run impacts were dependent on developing Lake States markets and forest management techniques. Further research is necessary on the value of short-run losses to stumpage owners so that the costs of forest management can be compared with outbreak losses. Long-run shifts in demand can be facilitated by attracting new industry to the area, developing new markets for the spruce-fir resource, and demonstrating that the spruce-fir resource can provide a continuous fiber source in the future.
These shifts would provide the price incentives that land managers require to undertake intensive forest management. Research on the development of new markets for the spruce-fir resource is needed. As markets develop, the long-run impacts become less severe. Technology transfer programs already exist to aid land managers in developing management strategies to increase yields of spruce-fir and minimize outbreak impact
NASA's Space Launch Transitions: From Design to Production
NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability
Regional alcohol consumption and alcohol-related mortality in Great Britain: novel insights using retail sales data
Background:
Regional differences in population levels of alcohol-related harm exist across Great Britain, but these are not entirely consistent with differences in population levels of alcohol consumption. This incongruence may be due to the use of self-report surveys to estimate consumption. Survey data are subject to various biases and typically produce consumption estimates much lower than those based on objective alcohol sales data. However, sales data have never been used to estimate regional consumption within Great Britain (GB). This ecological study uses alcohol retail sales data to provide novel insights into regional alcohol consumption in GB, and to explore the relationship between alcohol consumption and alcohol-related mortality.
Methods:
Alcohol sales estimates derived from electronic sales, delivery records and retail outlet sampling were obtained. The volume of pure alcohol sold was used to estimate per adult consumption, by market sector and drink type, across eleven GB regions in 2010–11. Alcohol-related mortality rates were calculated for the same regions and a cross-sectional correlation analysis between consumption and mortality was performed.
Results:
Per adult consumption in northern England was above the GB average and characterised by high beer sales. A high level of consumption in South West England was driven by on-trade sales of cider and spirits and off-trade wine sales. Scottish regions had substantially higher spirits sales than elsewhere in GB, particularly through the off-trade. London had the lowest per adult consumption, attributable to lower off-trade sales across most drink types. Alcohol-related mortality was generally higher in regions with higher per adult consumption. The relationship was weakened by the South West and Central Scotland regions, which had the highest consumption levels, but discordantly low and very high alcohol-related mortality rates, respectively.
Conclusions:
This study provides support for the ecological relationship between alcohol-related mortality and alcohol consumption. The synthesis of knowledge from a combination of sales, survey and mortality data, as well as primary research studies, is key to ensuring that regional alcohol consumption, and its relationship with alcohol-related harms, is better understood
A Year of Progress: NASA's Space Launch System Approaches Critical Design Review
NASA's Space Launch System (SLS) made significant progress on the manufacturing floor and on the test stand in 2014 and positioned itself for a successful Critical Design Review in mid-2015. SLS, the world's only exploration-class heavy lift rocket, has the capability to dramatically increase the mass and volume of human and robotic exploration. Additionally, it will decrease overall mission risk, increase safety, and simplify ground and mission operations - all significant considerations for crewed missions and unique high-value national payloads. Development now is focused on configuration with 70 metric tons (t) of payload to low Earth orbit (LEO), more than double the payload of the retired Space Shuttle program or current operational vehicles. This "Block 1" design will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on an uncrewed flight beyond the Moon and back and the first crewed flight around the Moon. The current design has a direct evolutionary path to a vehicle with a 130t lift capability that offers even more flexibility to reduce planetary trip times, simplify payload design cycles, and provide new capabilities such as planetary sample returns. Every major element of SLS has successfully completed its Critical Design Review and now has hardware in production or testing. In fact, the SLS MPCV-to-Stage-Adapter (MSA) flew successfully on the Exploration Flight Test (EFT) 1 launch of a Delta IV and Orion spacecraft in December 2014. The SLS Program is currently working toward vehicle Critical Design Review in mid-2015. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability
Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation
Multicomponent multiphase reactive transport processes with
dissolution-precipitation are widely encountered in energy and environment
systems. A pore-scale two-phase multi-mixture model based on the lattice
Boltzmann method (LBM) is developed for such complex transport processes, where
each phase is considered as a mixture of miscible components in it. The
liquid-gas fluid flow with large density ratio is simulated using the
multicomponent multiphase pseudo-potential LB model; the transport of certain
solute in the corresponding solvent is solved using the mass transport LB
model; and the dynamic evolutions of the liquid-solid interface due to
dissolution-precipitation are captured by an interface tracking scheme. The
model developed can predict coupled multiple physicochemical processes
including multiphase flow, multicomponent mass transport, homogeneous reactions
in the bulk fluid and heterogeneous dissolution-precipitation reactions at the
fluid-solid interface, and dynamic evolution of the solid matrix geometries at
the pore-scale. The model is then applied to a physicochemical system
encountered in shale gas/oil industry involving multiphase flow, multicomponent
reactive transport and dissolution-precipitation, with several reactions whose
rates can be several orders of magnitude different at a given temperature. The
pore-scale phenomena and complex interaction between different sub-processes
are investigated and discussed in detail
Contemplative Practices: A Strategy to Improve Health and Reduce Disparities.
Health has many dimensions, and intolerance and lack of compassion may contribute to the poor health and disparities in our nation. Tolerance can convey an inherent paradox or dissonance that can be associated with stress. However, tolerance has a dimension of acceptance, an acknowledgement and acceptance of what "is" at the present moment, that can relieve tension associated with differing beliefs and practices. Compassionate consideration of others can be combined with acceptance to create harmony within and across individuals. In this article, we explore how contemplative practices can cultivate tolerance and compassion and contribute to improvements in individual and population health
The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken
The replacement histone H2A.Z is variously reported
as being linked to gene expression and preventing the
spread of heterochromatin in yeast, or concentrated
at heterochromatin in mammals. To resolve this
apparent dichotomy, affinity-purified antibodies
against the N-terminal region of H2A.Z, in both a triacetylatedandnon-
acetylatedstate, areusedin native
chromatin immmuno-precipitation experiments with
mononucleosomes from three chicken cell types. The
hyperacetylated species concentrates at the 50 end of
active genes, both tissue specific and housekeeping
but is absent from inactive genes, while the
unacetylated form is absent from both active and
inactive genes. A concentration of H2A.Z is also
found at insulators under circumstances implying a
link to barrier activity but not to enhancer blocking.
Although acetylated H2A.Z is widespread throughout
the interphase genome, at mitosis its acetylation is
erased, the unmodified form remaining. Thus,
although H2A.Z may operate as an epigenetic marker
for active genes, its N-terminal acetylation does not
NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable, Exploration
Development of NASA's Space Launch System (SLS) exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated December 2017. SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. For the United States current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. This version will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. SLS is designed to evolve to a 130 t lift capability that can reduce mission costs, simplify payload design, reduce trip times, and lower overall risk. Each vehicle element completed its respective Preliminary Design Reviews, followed by the SLS Program. The Program also completed the Key Decision Point-C milestone to move from formulation to implementation in 2014. NASA hasthorized the program to proceed to Critical Design Review, scheduled for 2015. Accomplihments to date include: manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. This paper will discuss SLS Program successes over the past year and examine milestones and challenges ahead. The SLS Program and its elements are managed at NASA's Marshall Space Flight Center (MSFC)
- …
