1,029 research outputs found
UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction.
Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology
Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco
Aphids, including the generalist herbivore Myzus persicae, transmit cucumber mosaic virus (CMV). CMV (strain Fny) infection affects M. persicae feeding behavior and performance on tobacco (Nicotiana tabacum), Arabidopsis thaliana and cucurbits in varying ways. In Arabidopsis and cucurbits, CMV decreases host quality and inhibits prolonged feeding by aphids, which may enhance virus transmission rates. CMV-infected cucurbits also emit deceptive, aphid-attracting volatiles, which may favor virus acquisition. In contrast, aphids on CMV-infected tobacco (cv. Xanthi) exhibit increased survival and reproduction. This may not increase transmission but might increase virus and vector persistence within plant communities. The CMV 2b counter-defense protein diminishes resistance to aphid infestation in CMV-infected tobacco plants. We hypothesised that in tobacco CMV and its 2b protein might also alter the emission of volatile organic compounds that would influence aphid behavior
Circulating angiogenic cell response to sprint interval and continuous exercise.
Although commonly understood as immune cells, certain T lymphocyte and monocyte subsets have angiogenic potential, contributing to blood vessel growth and repair. These cells are highly exercise responsive and may contribute to the cardiovascular benefits seen with exercise.Purpose: To compare the effects of a single bout of continuous (CONTEX) and sprint interval exercise (SPRINT) on circulating angiogenic cells (CAC) in healthy recreationally active adults.Methods: Twelve participants (aged 29 ±2y, BMI 25.5±0.9 kg.m-28 2, ̇O2peak 44.3±1.8 ml.kg-1.min-1; mean±SEM) participated in the study. Participants completed a 45 min bout of CONTEX at 70% peak oxygen uptake and 6x20 sec sprints on a 30 cycle ergometer, in a counterbalanced design. Blood was sampled pre-, post-, 2h and 24h post-31 exercise for quantification of CAC subsets by whole blood flow cytometric analysis. Angiogenic T lymphocytes (TANG) and angiogenic Tie2-expressing monocytes (TEM) were 33 identified by the expression of CD31 and Tie2 respectively.Results: Circulating (cells.μL-1) 34 CD3+CD31+TANG increased immediately post-exercise in both trials (
Environmental drivers of aquatic macrophyte communities in southern tropical African rivers:Zambia as a case study
The first-ever extensive macrophyte survey of Zambian rivers and associated floodplain waterbodies, conducted during 2006–2012, collected 271 samples from 228 sites, mainly located in five freshwater ecoregions of the world primarily represented in Zambia. The results supported the hypothesis that variation in macrophyte community structure (measured as species composition and diversity) in southern tropical African river systems, using Zambia as a case study area, is driven primarily by geographical variation in water physico-chemical conditions. In total, 335 macrophyte taxa were recorded, and a chronological cumulative species records curve for the dataset showed no sign of asymptoting: clearly many additional macrophyte species remain to be found in Zambian rivers. Emergent macrophytes were predominant (236 taxa), together with 26 floating and 73 submerged taxa. Several species were rare in a regional or international context, including two IUCN Red Data List species: Aponogeton rehmanii and Nymphaea divaricata. Ordination and classification analysis of the data found little evidence for temporal change in vegetation, at repeatedly-sampled sites, but strong evidence for the existence of seven groups of samples from geographically-varied study sites. These supported differing sets of vegetation (with eight species assemblages present in the sample-groups) and showed substantial inter-group differences in both macrophyte alpha-diversity, and geographically-varying physico-chemical parameters. The evidence suggested that the main environmental drivers of macrophyte community composition and diversity were altitude, stream order, shade, pH, alkalinity, NO3-N, and underwater light availability, while PO4-P showed slightly lower, but still significant variation between sample-groups
The Nature of Infrared Emission in the Local Group Dwarf Galaxy NGC 6822 As Revealed by Spitzer
We present Spitzer imaging of the metal-deficient (Z ~30% Z_sun) Local Group
dwarf galaxy NGC 6822. On spatial scales of ~130 pc, we study the nature of IR,
H alpha, HI, and radio continuum emission. Nebular emission strength correlates
with IR surface brightness; however, roughly half of the IR emission is
associated with diffuse regions not luminous at H alpha (as found in previous
studies). The global ratio of dust to HI gas in the ISM, while uncertain at the
factor of ~2 level, is ~25 times lower than the global values derived for
spiral galaxies using similar modeling techniques; localized ratios of dust to
HI gas are about a factor of five higher than the global value in NGC 6822.
There are strong variations (factors of ~10) in the relative ratios of H alpha
and IR flux throughout the central disk; the low dust content of NGC 6822 is
likely responsible for the different H alpha/IR ratios compared to those found
in more metal-rich environments. The H alpha and IR emission is associated with
high-column density (> ~1E21 cm^-2) neutral gas. Increases in IR surface
brightness appear to be affected by both increased radiation field strength and
increased local gas density. Individual regions and the galaxy as a whole fall
within the observed scatter of recent high-resolution studies of the radio-far
IR correlation in nearby spiral galaxies; this is likely the result of depleted
radio and far-IR emission strengths in the ISM of this dwarf galaxy.Comment: ApJ, in press; please retrieve full-resolution version from
http://www.astro.wesleyan.edu/~cannon/pubs.htm
Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle
The development of skeletal muscle insulin resistance is an early physiological defect, yet the intracellular mechanisms accounting for this metabolic defect remained unresolved. Here, we have examined the role of glucose-6-phosphate dehydrogenase (G6PDH) activity in the pathogenesis of insulin resistance in skeletal muscle. Methods Multiple mouse disease states exhibiting insulin resistance and glucose intolerance, as well as obese humans defined as insulin-sensitive, insulin-resistant, or pre-diabetic, were examined. Results We identified increased glucose-6-phosphate dehydrogenase (G6PDH) activity as a common intracellular adaptation that occurs in parallel with the induction of insulin resistance in skeletal muscle and is present across animal and human disease states with an underlying pathology of insulin resistance and glucose intolerance. We observed an inverse association between G6PDH activity and nitric oxide synthase (NOS) activity and show that increasing NOS activity via the skeletal muscle specific neuronal (n)NOSμ partially suppresses G6PDH activity in skeletal muscle cells. Furthermore, attenuation of G6PDH activity in skeletal muscle cells via (a) increased nNOSμ/NOS activity, (b) pharmacological G6PDH inhibition, or (c) genetic G6PDH inhibition increases insulin-independent glucose uptake. Conclusions We have identified a novel, previously unrecognized role for G6PDH in the regulation of skeletal muscle glucose metabolism. <br /
Different plant viruses induce changes in feeding behavior of specialist and generalist aphids on common bean that are likely to enhance virus transmission
Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) cause serious epidemics in common bean (Phaseolus vulgaris), a vital food security crop in many low-to-medium income countries, particularly in Sub-Saharan Africa. Aphids transmit these viruses “non-persistently,” i.e., virions attach loosely to the insects' stylets. Viruses may manipulate aphid-host interactions to enhance transmission. We used direct observation and electrical penetration graph measurements to see if the three viruses induced similar or distinct changes in feeding behaviors of two aphid species, Aphis fabae and Myzus persicae. Both aphids vector BCMV, BCMNV, and CMV but A. fabae is a legume specialist (the dominant species in bean fields) while M. persicae is a generalist that feeds on and transmits viruses to diverse plant hosts. Aphids of both species commenced probing epidermal cells (behavior optimal for virus acquisition and inoculation) sooner on virus-infected plants than on mock-inoculated plants. Infection with CMV was especially disruptive of phloem feeding by the bean specialist aphid A. fabae. A. fabae also experienced mechanical stylet difficulty when feeding on virus-infected plants, and this was also exacerbated for M. persicae. Overall, feeding on virus-infected host plants by specialist and generalist aphids was affected in different ways but all three viruses induced similar effects on each aphid type. Specifically, non-specialist (M. persicae) aphids encountered increased stylet difficulties on plants infected with BCMV, BCMNV, or CMV, whereas specialist aphids (A. fabae) showed decreased phloem ingestion on infected plants. Probing and stylet pathway activity (which facilitate virus transmission) were not decreased by any of the viruses for either of the aphid species, except in the case of A. fabae on CMV-infected bean, where these activities were increased. Overall, these virus-induced changes in host-aphid interactions are likely to enhance non-persistent virus transmission, and data from this work will be useful in epidemiological modeling of non-persistent vectoring of viruses by aphids
- …